Novel determinants of cell size homeostasis in the opportunistic yeast Candida albicans

Berman J (2006) Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9:595–601. https://doi.org/10.1016/j.mib.2006.10.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Björklund M (2019) Cell size homeostasis: metabolic control of growth and cell division. Biochim Biophys Acta (BBA) Mol Cell Res 1866:409–417. https://doi.org/10.1016/j.bbamcr.2018.10.002

Article  CAS  Google Scholar 

Blank HM, Li C, Mueller JE et al (2008) An increase in mitochondrial DNA promotes nuclear DNA replication in yeast. PLoS Genet 4:e1000047. https://doi.org/10.1371/journal.pgen.1000047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blank HM, Callahan M, Pistikopoulos IPE et al (2018) Scaling of G1 duration with population doubling time by a cyclin in Saccharomyces cerevisiae. Genetics 210:895–906. https://doi.org/10.1534/genetics.118.301507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP (2010) An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 6:e1000752. https://doi.org/10.1371/journal.ppat.1000752

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025. https://doi.org/10.1038/ni.2987

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaillot J, Cook MA, Corbeil J, Sellam A (2017) Genome-wide screen for haploinsufficient cell size genes in the opportunistic yeast Candida albicans. G3 (bethesda) 7:355–360. https://doi.org/10.1534/g3.116.037986

Article  PubMed  Google Scholar 

Chaillot J, Tebbji F, Mallick J, Sellam A (2019) Integration of growth and cell size via the TOR pathway and the Dot6 transcription factor in Candida albicans. Genetics 211:637–650. https://doi.org/10.1534/genetics.118.301872

Article  CAS  PubMed  Google Scholar 

Chaillot J, Mallick J, Sellam A (2022) The transcription factor Ahr1 links cell size control to amino acid metabolism in the opportunistic yeast Candida albicans. Biochem Biophys Res Commun 616:63–69. https://doi.org/10.1016/j.bbrc.2022.05.074

Article  CAS  PubMed  Google Scholar 

Cheffings TH, Burroughs NJ, Balasubramanian MK (2016) Actomyosin ring formation and tension generation in eukaryotic cytokinesis. Curr Biol 26:R719–R737. https://doi.org/10.1016/j.cub.2016.06.071

Article  CAS  PubMed  Google Scholar 

Cook M, Tyers M (2007) Size control goes global. Curr Opin Biotechnol 18:341–350. https://doi.org/10.1016/j.copbio.2007.07.006

Article  CAS  PubMed  Google Scholar 

Costanzo M, Nishikawa JL, Tang X et al (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913. https://doi.org/10.1016/j.cell.2004.05.024

Article  CAS  PubMed  Google Scholar 

Cote P, Hogues H, Whiteway M (2009) Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 20:3363–3373. https://doi.org/10.1091/mbc.E09-03-0210

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Bruin RA, McDonald WH, Kalashnikova TI et al (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117:887–898. https://doi.org/10.1016/j.cell.2004.05.025

Article  PubMed  Google Scholar 

Dorsey S, Tollis S, Cheng J et al (2018) G1/S transcription factor copy number is a growth-dependent determinant of cell cycle commitment in yeast. Cell Syst 6:539-554.e11. https://doi.org/10.1016/j.cels.2018.04.012

Article  CAS  PubMed  Google Scholar 

Fisher RP (2021) A cell cycle regulator branches out. Science 374:263–264. https://doi.org/10.1126/science.abm2010

Article  CAS  PubMed  Google Scholar 

Harvey SL, Kellogg DR (2003) Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol 13:264–275. https://doi.org/10.1016/s0960-9822(03)00049-6

Article  CAS  PubMed  Google Scholar 

Hommel B, Mukaremera L, Cordero RJB et al (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14:e1006982. https://doi.org/10.1371/journal.ppat.1006982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027. https://doi.org/10.1016/j.cub.2004.11.027

Article  CAS  PubMed  Google Scholar 

Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400. https://doi.org/10.1126/science.1070850

Article  CAS  PubMed  Google Scholar 

Jorgensen P, Rupes I, Sharom JR et al (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18:2491–2505. https://doi.org/10.1101/gad.1228804

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juanes MA, Piatti S (2016) The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 73:3115–3136. https://doi.org/10.1007/s00018-016-2220-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kõivomägi M, Swaffer MP, Turner JJ et al (2021) G1 cyclin–Cdk promotes cell cycle entry through localized phosphorylation of RNA polymerase II. Science 374:347–351. https://doi.org/10.1126/science.aba5186

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavoie H, Hogues H, Whiteway M (2009) Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr Opin Microbiol 12:655–663. https://doi.org/10.1016/j.mib.2009.09.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A 91:6808–6814. https://doi.org/10.1073/pnas.91.15.6808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Johnson AD (2010) Evolution of transcription networks–lessons from yeasts. Curr Biol 20:R746–R753. https://doi.org/10.1016/j.cub.2010.06.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Litsios A, Huberts DHEW, Terpstra HM et al (2019) Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast. Nat Cell Biol 21:1382–1392. https://doi.org/10.1038/s41556-019-0413-3

Article  CAS  PubMed  Google Scholar 

Liu S, Ginzberg MB, Patel N et al (2018) Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. Elife 7:e26947. https://doi.org/10.7554/eLife.26947

Article  PubMed  PubMed Central  Google Scholar 

Lloyd AC (2013) The regulation of cell size. Cell 154:1194–1205. https://doi.org/10.1016/j.cell.2013.08.053

Article  CAS  PubMed  Google Scholar 

Miettinen TP, Björklund M (2016) Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev Cell 39:370–382. https://doi.org/10.1016/j.devcel.2016.09.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roemer T, Jiang B, Davison J et al (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181. https://doi.org/10.1046/j.1365-2958.2003.03697.x

Article  CAS  PubMed  Google Scholar 

Rossio V, Yoshida S (2011) Spatial regulation of Cdc55–PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. J Cell Biol 193:445–454. https://doi.org/10.1083/jcb.201101134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:327–331. https://doi.org/10.1038/nature12130

Article  CAS  PubMed  Google Scholar 

Schmoller KM, Turner JJ, Kõivomägi M, Skotheim JM (2015) Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526:268–272. https://doi.org/10.1038/nature14908

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmoller KM, Lanz MC, Kim J et al (2022) Whi5 is diluted and protein synthesis does not dramatically increase in pre-Start G1. MBoC. 33:lt1. https://doi.org/10.1091/mbc.E21-01-0029

留言 (0)

沒有登入
gif