Characterizing surface water concentrations of hundreds of organic chemicals in United States for environmental risk prioritization

National Research Council. Risk assessment in the federal government: managing the process. Washington (DC): National Academies Press (US); 1983.

Zartarian V, Bahadori T, McKone T. Adoption of an official ISEA glossary. J Expo Anal Environ Epidemiol. 2005;15:1–5. https://doi.org/10.1038/sj.jea.7500411.

Article  CAS  PubMed  Google Scholar 

Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, et al. The toxicity data landscape for environmental chemicals. Environ Health Perspect. 2009;117:685–95. https://doi.org/10.1289/ehp.0800168.

Article  CAS  PubMed  Google Scholar 

Egeghy PP, Judson R, Gangwal S, Mosher S, Smith D, Vail J, et al. The exposure data landscape for manufactured chemicals. Sci Total Environ. 2012;414:159–66. https://doi.org/10.1016/j.scitotenv.2011.10.046.

Article  CAS  PubMed  Google Scholar 

Kavlock RJ, Bahadori T, Barton-Maclaren TS, Gwinn MR, Rasenberg M, Thomas RS. Accelerating the pace of chemical risk assessment. Chem Res Toxicol. 2018;31:287–90. https://doi.org/10.1021/acs.chemrestox.7b00339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turley AE, Isaacs KK, Wetmore BA, Karmaus AL, Embry MR, Krishan M. Incorporating new approach methodologies in toxicity testing and exposure assessment for tiered risk assessment using the RISK21 approach: case studies on food contact chemicals. Food Chem Toxicol. 2019;134:110819. https://doi.org/10.1016/j.fct.2019.110819.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parish ST, Aschner M, Casey W, Corvaro M, Embry MR, Fitzpatrick S, et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul Toxicol Pharm. 2020;112:104592. https://doi.org/10.1016/j.yrtph.2020.104592.

Article  Google Scholar 

Wambaugh JF, Bare JC, Carignan CC, Dionisio KL, Dodson RE, Jolliet O, et al. New approach methodologies for exposure science. Curr Opin Toxicol. 2019;15:76–92. https://doi.org/10.1016/j.cotox.2019.07.001.

Article  Google Scholar 

Arnot JA, Mackay D, Webster E, Southwood JM. Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol. 2006;40:2316–23. https://doi.org/10.1021/es0514085.

Article  CAS  PubMed  Google Scholar 

Barber MC, Isaacs KK, Tebes-Stevens C. Developing and applying metamodels of high resolution process-based simulations for high throughput exposure assessment of organic chemicals in riverine ecosystems. Sci Total Environ. 2017;605-606:471–81. https://doi.org/10.1016/j.scitotenv.2017.06.198.

Article  CAS  PubMed Central  Google Scholar 

Rosenbaum RK, Huijbregts MAJ, Henderson AD, Margni M, McKone TE, van de Meent D, et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess. 2011;16:710. https://doi.org/10.1007/s11367-011-0316-4.

Article  CAS  Google Scholar 

Schmolke A, Thorbek P, Chapman P, Grimm V. Ecological models and pesticide risk assessment: current modeling practice. Environ Toxicol Chem. 2010;29:1006–12. https://doi.org/10.1002/etc.120.

Article  CAS  PubMed  Google Scholar 

Arnot JA, Brown TN, Wania F, Breivik K, McLachlan MS. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment. Environ Health Perspect. 2012;120:1565–70. https://doi.org/10.1289/ehp.1205355.

Article  PubMed  PubMed Central  Google Scholar 

MacLeod M, Scheringer M, McKone TE, Hungerbuhler K. The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol. 2010;44:8360–4. https://doi.org/10.1021/es103297w.

Article  CAS  PubMed  Google Scholar 

Mitchell J, Arnot JA, Jolliet O, Georgopoulos PG, Isukapalli S, Dasgupta S, et al. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential. Sci Total Environ. 2013;458-460:555–67. https://doi.org/10.1016/j.scitotenv.2013.04.051.

Article  CAS  PubMed  Google Scholar 

Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ Sci Technol. 2013;47:8479–88. https://doi.org/10.1021/es400482g.

Article  CAS  PubMed  Google Scholar 

Fryer M, Collins CD, Ferrier H, Colvile RN, Nieuwenhuijsen MJ. Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications. Environ Sci Policy. 2006;9:261–74. https://doi.org/10.1016/j.envsci.2005.11.011.

Article  Google Scholar 

Hommen U, Baveco JM, Galic N, van den Brink PJ. Potential application of ecological models in the European environmental risk assessment of chemicals. I. Review of protection goals in EU directives and regulations. Integr Environ Assess Manag. 2010;6:325–37. https://doi.org/10.1002/ieam.69.

Article  CAS  PubMed  Google Scholar 

Ring CL, Arnot JA, Bennett DH, Egeghy PP, Fantke P, Huang L, et al. Consensus modeling of median chemical intake for the U.S. population based on predictions of exposure pathways. Environ Sci Technol. 2019;53:719–32. https://doi.org/10.1021/acs.est.8b04056.

Article  CAS  PubMed  Google Scholar 

Hirsch RM, Fisher GT. Past, present, and future of water data delivery from the U.S. Geological Survey. J Contemp Water Res Educ. 2014;153:4–15.

Article  Google Scholar 

Read EK, Carr L, DeCicco LA, Dugan H, Hanson PC, Hart JA, et al. Water quality data for national-scale aquatic research: the Water Quality Portal. Water Resour Res. 2017;53:1735–45. https://doi.org/10.1002/2016WR019993.

Article  Google Scholar 

Sprague LA, Oelsner GP, Argue DM. Challenges with secondary use of multi-source water-quality data in the United States. Water Res. 2017;110:252–61.

Article  CAS  PubMed  Google Scholar 

Grulke CM, Williams AJ, Thillanadarajah I, Richard AM. EPA’s DSSTox database: history of development of a curated chemistry resource supporting computational toxicology research. Comput Toxicol. 2019;12. https://doi.org/10.1016/j.comtox.2019.100096.

Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform. 2017;9:61. https://doi.org/10.1186/s13321-017-0247-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucijanic M, Skelin M, Lucijanic T. Survival analysis, more than meets the eye. Biochem Med. 2017;27:14–8.

Article  Google Scholar 

Millard SP. EnvStats: an R package for environmental statistics. New York: Springer; 2013.

Neuhaus G. Conditional rank tests for the two-sample problem under random censorship. Ann Stat. 1993;21:1760–79. http://www.jstor.org/stable/2242315.

Article  Google Scholar 

Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it. Chemosphere. 2006;65:2434–9. https://doi.org/10.1016/j.chemosphere.2006.04.051.

Article  CAS  PubMed  Google Scholar 

Shoari N, Dubé JS. Toward improved analysis of concentration data: embracing nondetects. Environ Toxicol Chem. 2018;37:643–56. https://doi.org/10.1002/etc.4046.

Article  CAS  PubMed  Google Scholar 

Helsel DR, Hirsch RM, Ryberg KR, Archfield SA, Gilroy EJ. 2020, Statistical methods in water resources: techniques and methods. Reston, VA: U.S. Geological Survey; 2020. p. 458. Report 4-A3. https://doi.org/10.3133/tm4a3.

Zhong M, Hess KR. Mean survival time from right censored data. Working Paper 66. COBRA Preprint Series; 2009. http://biostats.bepress.com/cobra/art66.

U.S. Environmental Protection Agency. ECOTOX user guide: ECOTOXicology Knowledgebase System. Version 5.3. 2020. http://www.epa.gov/ecotox/.

Posthuma L, van Gils J, Zijp MC, van de Meent D, de Zwart D. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12386 chemicals. Environ Toxicol Chem. 2019;38:905–17. https://doi.org/10.1002/etc.4373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform. 2018;10:10. https://doi.org/10.1186/s13321-018-0263-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

George BJ, Gains-Germain L, Broms K, Black K, Furman M, Hays MD, et al. Censoring trace-level environmental data: statistical analysis considerations to limit bias. Environ Sci Technol. 2021;55:3786–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif