Lubrication mechanism of a strong tribofilm by imidazolium ionic liquid

Bronshteyn L A, Kreiner J H. Energy efficiency of industrial oils. Tribol Trans 42(4): 771–776 (1999)

Google Scholar 

Hsu S M, Zhang J, Yin Z F. The nature and origin of tribochemistry. Tribol Lett 13(2): 131–139 (2002)

Google Scholar 

Boyde S. Green lubricants. Environmental benefits and impacts of lubrication. Green Chem 4(4): 293–307 (2002)

Google Scholar 

Spikes H. Friction modifier additives. Tribol Lett 60: 5 (2015)

Google Scholar 

Zhang J, Meng Y G. Boundary lubrication by adsorption film. Friction 3(2): 115–147 (2015)

Google Scholar 

Mordukhovich G, Qu J, Howe J Y, Bair S, Yu B, Luo H M, Smolenski D J, Blau P J, Bunting B G, Dai S. A low-viscosity ionic liquid demonstrating superior lubricating performance from mixed to boundary lubrication. Wear 301(1–2): 740–746 (2013)

Google Scholar 

Desanker M, He X L, Lu J, Liu P Z, Pickens D B, Delferro M, Marks T J, Chung Y W, Wang Q J. Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl Mater Interfaces 9(10): 9118–9125 (2017)

Google Scholar 

Bassanetti I, Twist C P, Kim M G, Seyam A M, Bazzi H S, Wang Q J, Chung Y W, Marchió L, Delferro M, Marks T J. Synthesis and characterization of silver(I) pyrazolylmethylpyridine complexes and their implementation as metallic silver thin film precursors. Inorg Chem 53(9): 4629–4638 (2014)

Google Scholar 

Li K, Amann T, List M, Walter M, Moseler M, Kailer A, Rühe J. Ultralow friction of steel surfaces using a 1,3-diketone lubricant in the thin film lubrication regime. Langmuir 31(40): 11033–11039 (2015)

Google Scholar 

Zhou Y, Qu J. Ionic liquids as lubricant additives: A review. ACS Appl Mater Interfaces 9(4): 3209–3222 (2017)

Google Scholar 

Zhou F, Liang Y M, Liu W M. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem Soc Rev 38(9): 2590–2599.

Qu J, Luo H M, Chi M F, Ma C, Blau P J, Dai S, Viola M B. Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol Int 71: 88–97 (2014)

Google Scholar 

Zhou Y, Weber J, Viola M B, Qu J. Is more always better? Tribofilm evolution and tribological behavior impacted by the concentration of ZDDP, ionic liquid, and ZDDP-ionic liquid combination. Wear 432-433: 202951 (2019)

Google Scholar 

Yu Q L, Zhang C Y, Dong R, Shi Y J, Wang Y R, Bai Y Y, Zhang J Y, Cai M R, Zhou F, Liu W M. Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids. Friction 9(2): 344–355 (2021)

Google Scholar 

Qu M H, Yang Z Q, Zhang C Y, Yu Q L, Cai M R, Zhou F. Significantly enhancing lubricity and anti-wear performances of glycerol lubricant with urea-functionalized imidazolium-organophosphate ionic liquid as additive. Tribol Int 153: 106602 (2021)

Google Scholar 

Cai M R, Yu Q L, Liu W M, Zhou F. Ionic liquid lubricants: When chemistry meets tribology. Chem Soc Rev 49(21): 7753–7818 (2020)

Google Scholar 

Li W M, Kumara C, Luo H M, Meyer H M III, He X, Ngo D, Kim S H, Qu J. Ultralow boundary lubrication friction by three-way synergistic interactions among ionic liquid, friction modifier, and dispersant. ACS Appl Mater Interfaces 12(14): 17077–17090 (2020)

Google Scholar 

Li W M, Kumara C, Meyer H M III, Luo H M, Qu J. Compatibility between various ionic liquids and an organic friction modifier as lubricant additives. Langmuir 34(36): 10711–10720 (2018)

Google Scholar 

Guegan J, Southby M, Spikes H. Friction modifier additives, synergies and antagonisms. Tribol Lett 67(3): 83 (2019)

Google Scholar 

Ngo D, He X, Luo H M, Qu J, Kim S H. Competitive adsorption of ionic liquids versus friction modifier and anti-wear additive at solid/lubricant interface—Speciation with vibrational dum frequency generation spectroscopy. Lubricants 8(11): 98 (2020)

Google Scholar 

Neville A, Morina A, Haque T, Voong M. Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribol Int 40(10–12): 1680–1695 (2007)

Google Scholar 

Hanna F F, Gestblom B, Soliman A. Dielectric relaxation study of alcohol/diol(s) mixtures. J Mol Liq 95(1): 27–40 (2002)

Google Scholar 

Fujimori Y, Kaden W E, Brown M A, Cuenya B R, Sterrer M, Freund H J. Hydrogen evolution from metal—surface hydroxyl interaction. J Phys Chem C 118(31): 17717–17723 (2014)

Google Scholar 

Grill A. Review of the tribology of diamond-like carbon. Wear 168(1–2): 143–153 (1993)

Google Scholar 

Dou Q Y, Liu L Y, Yang B J, Lang J W, Yan X B. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat Commun 8: 2188 (2017)

Google Scholar 

Viesca J L, Battez A H, González R, Reddyhoff T, Pérez A T, Spikes H A. Assessing boundary film formation of lubricant additivised with 1-hexyl-3-methylimidazolium tetrafluoroborate using ECR as qualitative indicator. Wear 269(1–2): 112–117 (2010)

Google Scholar 

Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—Fully flooded results. J Lubr Technol 99(2): 264–275 (1977)

Google Scholar 

Tavakkoli M, Panuganti S R, Vargas F M, Taghikhani V, Pishvaie M R, Chapman W G. Asphaltene deposition in different depositing environments: Part 1. Model oil. Energy Fuels 28(3): 1617–1628 (2014)

Google Scholar 

Campen S, Smith B, Wong J. Deposition of asphaltene from destabilized dispersions in heptane—toluene. Energy Fuels 32(9): 9159–9171 (2018)

Google Scholar 

Quraishi M A, Nayak D K, Kumar R, Kumar V. Corrosion of reinforced steel in concrete and its control: An overview. J Steel Struct Constr 3(1): 1000124. (2017)

Google Scholar 

Wu H X, Khan A M, Johnson B, Sasikumar K, Chung Y W, Wang Q J. Formation and nature of carbon-containing tribofilms. ACS Appl Mater Interfaces 11(17): 16139–16146 (2019)

Google Scholar 

De Faria D L A, Venâncio Silva S, de Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11): 873–878 (1997)

Google Scholar 

Hanesch M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177(3): 941–948 (2009)

Google Scholar 

Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59: 167–175 (2013)

Google Scholar 

Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54: 454–459 (2013)

Google Scholar 

Totolin V, Göcerler H, Rodríguez Ripoll M, Jech M. The role of ferric oxide nanoparticles in improving lubricity and tribo-electrochemical performance during chemical—mechanical polishing. Tribol Lett 65(1): 20 (2017)

Google Scholar 

Han Y Y, Qiao D, Guo Y X, Feng D P, Shi L. Influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG. Tribol Lett 64(2): 22 (2016)

Google Scholar 

Iida S, Hidaka Y. Influence of the iron oxide layer on lubricating properties in seamless pipe hot rolling. Tetsu-to-Hagane 94(7): 244–250 (2008)

Google Scholar 

Hu Z S, Dong J X, Chen G X. Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol Int 31(7): 355–360 (1998)

Google Scholar 

Fiaschi G, Rota A, Ballestrazzi A, Marchetto D, Vezzalini E, Valeri S. A chemical, mechanical, and tribological analysis of DLC coatings deposited by magnetron sputtering. Lubricants 7(4): 38 (2019)

Google Scholar 

Ge X Y, Li J J, Zhang C H, Liu Y H, Luo J B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl Mater Interfaces 11(6): 6568–6574 (2019)

Google Scholar 

Xu Y F, Peng Y B, Dearn K D, Zheng X J, Yao L L, Hu X G. Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 342-343: 297–309 (2015)

Google Scholar 

Wu B N, Breen J P, Xing X Y, Fayer M D. Controlling the dynamics of ionic liquid thin films via multilayer surface functionalization. J Am Chem Soc 142(20): 9482–9492 (2020)

Google Scholar 

Zhou Y, Dyck J, Graham T W, Luo H M, Leonard D N, Qu J. Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives. Langmuir 30(44): 13301–13311 (2014)

Google Scholar 

Dong R, Yu Q L, Bai Y Y, Wu Y, Ma Z F, Zhang J Y, Zhang C Y, Yu B, Zhou F, Liu W M, et al. Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem Eng J 383: 123201 (2020)

Google Scholar 

Lukevics E, Dzintara M. The alcoholysis of hydrosilanes. J Organomet Chem 295(3): 265–315 (1985)

Google Scholar 

Oostendorp D J, Bertrand G L, Stoffer J O. Kinetics and mechanism of the hydrolysis and alcoholysis of alkoxysilanes. J Adhesion Sci Technol 6(1): 171–191 (1992)

Google Scholar 

Khan T, Koide S, Tamura Y, Yamamoto H, Morina A, Neville A. Effects of using alternative extreme pressure (EP) and anti-wear (AW) additives with oxy-nitrided samples. Tribol Lett 66(1): 43 (2018)

Google Scholar 

Zhao J, Mao J Y, Li Y R, He Y Y, Luo J B. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl Surf Sci 434: 21–27 (2018)

Google Scholar 

Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc Roy Soc A Mat Phys Eng Sci 145(855): 362–387 (1934)

MATH  Google Scholar 

Anderson J S, Tilley R J D. Crystallographic shear in oxygen-deficient rutile: An electron microscope study. J Solid State Chem 2(3): 472–482 (1970)

Google Scholar 

Zhang J, Spikes H. On the mechanism of ZDDP antiwear film formation. Tribol Lett 63(2): 24 (2016)

Google Scholar 

Gosvami N N, Bares J A, Mangolini F, Konicek A R, Yablon D G, Carpick R W. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230): 102–106 (2015)

Google Scholar 

Guo Y X, Zhang L G, Zhang G, Wang D A, Wang T M, Wang Q H. High lubricity and electrical responsiveness of solvent-free ionic SiO2 nanofluids. J Mater Chem A 6(6): 2817–2827 (2018)

Google Scholar 

留言 (0)

沒有登入
gif