Regulation and control of wet friction of soft materials using surface texturing: A review

Sun J Y, Bhushan B. Nanomanufacturing of bioinspired surfaces. Tribol Int 129: 67–74 (2019)

Google Scholar 

Liu K S, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Prog Mater Sci 58(4): 503–564 (2013)

Google Scholar 

Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos Trans Roy Soc A Math Phys Eng Sci 368(1929): 4775–4806 (2010)

Google Scholar 

Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integr Comp Biol 42(6): 1081–1090 (2002)

Google Scholar 

Ko D H, Tumbleston J R, Henderson K J, Euliss L E, DeSimone J M, Lopez R, Samulski E T. Biomimetic microlens array with antireflective “moth-eye” surface. Soft Matter 7(14): 6404–6407 (2011)

Google Scholar 

Etsion I. State of the art in laser surface texturing. J Tribol 127(1): 248–253 (2005)

Google Scholar 

Etsion I. Modeling of surface texturing in hydrodynamic lubrication. Friction 1(3): 195–209 (2013)

Google Scholar 

Ibatan T, Uddin M S, Chowdhury M A K. Recent development on surface texturing in enhancing tribological performance of bearing sliders. Surf Coat Technol 272: 102–120 (2015)

Google Scholar 

Willis E. Surface finish in relation to cylinder liners. Wear 109(1–4): 351–366 (1986)

Google Scholar 

Evans C J, Bryan J B. “Structured”, “textured” or “engineered” surfaces. CIRP Ann 48(2): 541–556 (1999)

Google Scholar 

Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by microirregularities. J Basic Eng 88(1): 177–185 (1966)

Google Scholar 

Etsion I, Burstein L. A model for mechanical seals with regular microsurface structure. Tribol Trans 39(3): 677–683 (1996)

Google Scholar 

Yu H W, Wang X L, Zhou F. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol Lett 37(2): 123–130 (2010)

Google Scholar 

Wang X L, Kato K. Improving the anti-seizure ability of SiC seal in water with RIE texturing. Tribol Lett 14(4): 275–280 (2003)

Google Scholar 

Yu H, Deng H, Huang W, Wang X. The effect of dimple shapes on friction of parallel surfaces. Proc Inst Mech Eng Part J J Eng Tribol 225(8): 693–703 (2011)

Google Scholar 

Yuan S H, Huang W, Wang X L. Orientation effects of micro-grooves on sliding surfaces. Tribol Int 44(9): 1047–1054 (2011)

Google Scholar 

Wang X L, Kato K, Adachi K. The lubrication effect of micro-pits on parallel sliding faces of SiC in water. Tribol Trans 45(3): 294–301 (2002)

Google Scholar 

Wang X L, Kato K, Adachi K, Aizawa K. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol Int 36(3): 189–197 (2003)

Google Scholar 

Wang X, Kato K, Adachi K. Running-in effect on the load-carrying capacity of a water-lubricated SiC thrust bearing. Proc Inst Mech Eng Part J J Eng Tribol 219(2): 117–124 (2005)

Google Scholar 

Wang X L, Adachi K, Otsuka K, Kato K. Optimization of the surface texture for silicon carbide sliding in water. Appl Surf Sci 253(3): 1282–1286 (2006)

Google Scholar 

Allen Q, Raeymaekers B. Surface texturing of prosthetic hip implant bearing surfaces: A review. J Tribol 143(4): 040801 (2021)

Google Scholar 

Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribol Int 94: 509–529 (2016)

Google Scholar 

Roy T, Choudhury D, Murphy B P G. Tribological influences of micro texture on surface interfaces: A review. Tribol Mater 1(1): 001–012 (2018)

Google Scholar 

Prasad K N, Syed I, Subbu S K. Laser dimple texturing—Applications, process, challenges, and recent developments: A review. Aust J Mech Eng 20(2): 316–331 (2022)

Google Scholar 

Martin A, Clain J, Buguin A, Brochard-Wyart F. Wetting transitions at soft, sliding interfaces. Phys Rev E 65(3): 031605 (2002)

Google Scholar 

Varenberg M, Gorb S. Shearing of fibrillar adhesive microstructure: Friction and shear-related changes in pull-off force. J Roy Soc Interface 4(15): 721–725 (2007)

Google Scholar 

He B, Chen W, Jane Wang Q. Surface texture effect on friction of a microtextured poly (dimethylsiloxane) (PDMS). Tribol Lett 31(3): 187–197 (2008)

Google Scholar 

Brörmann K, Barel I, Urbakh M, Bennewitz R. Friction on a microstructured elastomer surface. Tribol Lett 50(1): 3–15 (2013)

Google Scholar 

Huang W, Jiang L, Zhou C X, Wang X L. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribol Int 52: 87–93 (2012)

Google Scholar 

Kasem H, Shriki H, Ganon L, Mizrahi M, Abd-Rbo K, Domb A J. Rubber plunger surface texturing for friction reduction in medical syringes. Friction 7(4): 351–358 (2019)

Google Scholar 

Xi Y W, Kaper H J, Choi C H, Sharma P K. Tribological properties of microporous polydimethylsiloxane (PDMS) surfaces under physiological conditions. J Colloid Interface Sci 561: 220–230 (2020)

Google Scholar 

Federle W, Barnes W J P, Baumgartner W, Drechsler P, Smith J M. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. J Roy Soc Interface 3(10): 689–697 (2006)

Google Scholar 

Wang S, Li M, Huang W, Wang X L. Sticking/climbing ability and morphology studies of the toe pads of Chinese fire belly newt. J Bionic Eng 13(1): 115–123 (2016)

Google Scholar 

Li M, Shi L P, Wang X L. Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids Surf B Biointerfaces 199: 111531 (2021)

Google Scholar 

Meng F D, Liu Q, Wang X, Tan D, Xue L J, Barnes W J P. Tree frog adhesion biomimetics: Opportunities for the development of new, smart adhesives that adhere under wet conditions. Phil Trans Roy Soc A 377(2150): 20190131 (2019)

Google Scholar 

Chen Y P, Meng J X, Gu Z, Wan X Z, Jiang L, Wang S T. Bioinspired multiscale wet adhesive surfaces: Structures and controlled adhesion. Adv Funct Mater 30(5): 1905287 (2020)

Google Scholar 

Kim S, Aksak B, Sitti M. Enhanced friction of elastomer microfiber adhesives with spatulate tips. Appl Phys Lett 91(22): 221913 (2007)

Google Scholar 

Ma S H, Wang D A, Liang Y M, Sun B Q, Gorb S N, Zhou F. Gecko-inspired but chemically switched friction and adhesion on nanofibrillar surfaces. Small 11(9–10): 1131–1137 (2015)

Google Scholar 

Xue L J, Iturri J, Kappl M, Butt H J, del Campo A. Bioinspired orientation-dependent friction. Langmuir 30(37): 11175–11182 (2014)

Google Scholar 

Stark A Y, Sullivan T W, Niewiarowski P H. The effect of surface water and wetting on gecko adhesion. J Exp Biol 215(17): 3080–3086 (2012)

Google Scholar 

Ivanović L, Vencl A, Stojanović B, Marković B. Biomimetics design for tribological applications. Tribol Ind 40(3): 448–456 (2018)

Google Scholar 

Baik S, Lee H J, Kim D W, Kim J W, Lee Y, Pang C. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv Mater 31(34): 1803309 (2019)

Google Scholar 

Malshe A P, Bapat S, Rajurkar K P, Haitjema H. Bio-inspired textures for functional applications. CIRP Ann 67(2): 627–650 (2018)

Google Scholar 

Kim D W, Baik S Y, Min H H, Chun S W, Lee H J, Kim K H, Lee J Y, Pang C H. Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv Funct Mater 29(13): 1807614 (2019)

Google Scholar 

Pang C, Lee C, Suh K Y. Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci 130(3): 1429–1441 (2013)

Google Scholar 

Martin P, Brochard-Wyart F. Dewetting at soft interfaces. Phys Rev Lett 80(15): 3296–3299 (1998)

Google Scholar 

Martin A, Buguin A, Brochard-Wyart F. Dewetting nucleation centers at soft interfaces. Langmuir 17(21): 6553–6559 (2001)

Google Scholar 

Verneuil E, Clain J, Buguin A, Brochard-Wyart F. Formation of adhesive contacts: Spreading versus dewetting. Eur Phys J E 10(4): 345–353 (2003)

Google Scholar 

Persson B J, Mugele F. Squeeze-out and wear: Fundamental principles and applications. J Phys: Condens Matter 16(10): R295–R355 (2004)

Google Scholar 

De Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena. New York (USA): Springer New York, 2004.

MATH  Google Scholar 

Roberts A D. Studies of lubricated rubber friction. Tribol Int 10(2): 115–122 (1977)

Google Scholar 

Roberts A D. Squeeze films between rubber and glass. J Phys D Appl Phys 4(3): 423–432 (1971)

Google Scholar 

Li M, Xie J, Shi L P, Huang W, Wang X L. Controlling direct contact force for wet adhesion with different wedged film stabilities. J Phys D Appl Phys 51(16): 165305 (2018)

Google Scholar 

Wang Z, Hu Z D, Huang W, Wang X L. Elastic support of magnetic fluids bearing. J Phys D Appl Phys 50(43): 435004 (2017)

Google Scholar 

Li M, Dai Q W, Jiao Q, Huang W, Wang X L. Magnetically stimulating capillary effect for reversible wet adhesions. Soft Matter 15(13): 2817–2825 (2019)

Google Scholar 

Kong L L, Huang W, Wang X L. Ionic liquid lubrication at electrified interfaces. J Phys D Appl Phys 49(22): 225301 (2016)

Google Scholar 

Krim J. Controlling friction with external electric or magnetic fields: 25 examples. Front Mech Eng 5: 22 (2019)

Google Scholar 

Wu-Bavouzet F, Clain-Burckbuchler J, Buguin A, de Gennes P G, Brochard-Wyart F. Stick—slip: Wet versus dry. J Adhesion 83(8): 761–784 (2007)

Google Scholar 

Myant C, Fowell M, Spikes H A, Stokes J R. An investigation of lubricant film thickness in sliding compliant contacts. Tribol Trans 53(5): 684–694 (2010)

Google Scholar 

Maegawa S, Nakano K. Mechanism of stick—slip associated with Schallamach waves. Wear 268(7–8): 924–930 (2010)

Google Scholar 

Deleau F, Mazuyer D, Koenen A. Sliding friction at elastomer/glass contact: Influence of the wetting conditions and instability analysis. Tribol Int 42(1): 149–159 (2009)

Google Scholar 

Yamamoto T, Kurokawa T, Ahmed J, Kamita G, Yashima S, Furukawa Y, Ota Y, Furukawa H, Gong J P. In situ observation of a hydrogel—glass interface during sliding friction. Soft Matter 10(30): 5589–5596 (2014)

Google Scholar 

Ahmed J, Guo H L, Yamamoto T, Kurokawa T, Takahata M, Nakajima T, Gong J P. Sliding friction of zwitterionic hydrogel and its electrostatic origin. Macromolecules 47(9): 3101–3107 (2014)

Google Scholar 

Wong P L, Zhao Y, Mao J. Facilitating effective hydrodynamic lubrication for zero-entrainment-velocity contacts based on boundary slip mechanism. Tribol Int 128: 89–95 (2018)

Google Scholar 

Nečas D, Jaroš T, Dočkal K, Šperka P, Vrbka M, Křupka I, Hartl M. The effect of kinematic conditions on film thickness in compliant lubricated contact. J Tribol 140(5): 051501 (2018)

Google Scholar 

Myant C, Reddyhoff T, Spikes H A. Laser-induced fluorescence for film thickness mapping in pure sliding lubricated, compliant, contacts. Tribol Int 43(11): 1960–1969 (2010)

Google Scholar 

Fowell M T, Myant C, Spikes H A, Kadiric A. A study of lubricant film thickness in compliant contacts of elastomeric seal materials using a laser induced fluorescence technique. Tribol Int 80: 76–89 (2014)

Google Scholar 

Myant C, Fowell M, Cann P. The effect of transient motion on isoviscous-EHL films in compliant, point, contacts. Tribol Int 72: 98–107 (2014)

Google Scholar 

Marx N, Guegan J, Spikes H A. Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol Int 99: 267–277 (2016)

留言 (0)

沒有登入
gif