High-temperature wear mechanisms of TiNbWN films: Role of nanocrystalline oxides formation

Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater 6(5): 299–303 (2004)

Google Scholar 

George E P, Raabe D, Ritchie R O. High-entropy alloys. Nat Rev Mater 4(8): 515–534 (2019)

Google Scholar 

Cantor B, Chang I T H, Knight P, Vincent A J B. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377: 213–218 (2004)

Google Scholar 

Zhang Y. Materials design of high-entropy materials. In: High-Entropy Materials: A Brief Introduction. Singapore: Springer Singapore, 2019: 35–63.

Google Scholar 

Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater 5(4): 295–309 (2020)

Google Scholar 

Moon J, Park J M, Bae J W, Do H S, Lee B J, Kim H S. A new strategy for designing immiscible medium-entropy alloys with excellent tensile properties. Acta Mater 193: 71–82 (2020)

Google Scholar 

Lewin E. Multi-component and high-entropy nitride coatings—A promising field in need of a novel approach. J Appl Phys 127(16): 160901 (2020)

Google Scholar 

Shu R, Paschalidou E M, Rao S G, Lu J, Greczynski G, Lewin E, Nyholm L, le Febvrier A, Eklund P. Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings. Surf Coat Technol 389: 125651 (2020)

Google Scholar 

Shu R, Paschalidou E M, Rao S G, Bakhit B, Boyd R, Moro M V, Primetzhofer D, Greczynski G, Nyholm L, le Febvrier A, et al. Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films. Surf Coat Technol 404: 126485 (2020)

Google Scholar 

Baran Ö. Manetron Sıçratma Yöntemiyle Kaplanmış TiNbN ve TiVN Filmlerin Mekanik ve Tribolojik Özelliklerinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7(2): 181–191 (2017) (in Turkish)

MathSciNet  Google Scholar 

Serro A P, Completo C, Colaço R, dos Santos F, da Silva C L, Cabral J M S, Araújo H, Pires E, Saramago B. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf Coat Technol 203(24): 3701–3707 (2009)

Google Scholar 

Zhou S, Liu W G, Liu H, Cai C L. Structural and electrical properties of Ti-W-N thin films deposited by reactive RF sputtering. Phys Procedia 18: 66–72 (2011)

Google Scholar 

Shaginyan L R, Mišina M, Zemek J, Musil J, Regent F, Britun V F. Composition, structure, microhardness and residual stress of W-Ti-N films deposited by reactive magnetron sputtering. Thin Solid Films 408(1–2): 136–147 (2002)

Google Scholar 

Kuchuk A V, Kladko V P, Lytvyn O S, Piotrowska A, Minikayev R A, Ratajczak R. Relationship between condition of deposition and properties of W-Ti-N thin films prepared by reactive magnetron sputtering. Adv Eng Mater 8(3): 209–212 (2006)

Google Scholar 

Cavaleiro A, Trindade B, Vieira M T. Influence of Ti addition on the properties of W—Ti—C/N sputtered films. Surf Coat Technol 174–175: 68–75 (2003)

Google Scholar 

Jalali R, Parhizkar M, Bidadi H, Naghshara H, Eshraghi M J. Characterization of nano-crystalline Ti-W-N thin films for diffusion barrier application: A structural, microstructural, morphological and mechanical study. Appl Phys A 124(12): 810 (2018)

Google Scholar 

Jalali R, Parhizkar M, Bidadi H, Naghshara H. Correlation between optical, structural and microstructural properties of Ti-W-N thin films. Ceram Int 46(5): 6454–6461 (2020)

Google Scholar 

Kitamika Y, Shingu H, Tanigawa S, Hasegawa H. Mechanical properties and oxidation resistance of Ti1−xWxN coatings. J Surf Finish Soc Jpn 69(11): 517–520 (2018)

Google Scholar 

Lou M, Chen X, Xu K, Deng Z X, Chen L L, Lv J, Chang K K, Wang L P. Temperature-induced wear transition in ceramic-metal composites. Acta Mater 205: 116545 (2021)

Google Scholar 

Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

Google Scholar 

Chen X, Han Z. A low-to-high friction transition in gradient nano-grained Cu and Cu-Ag alloys. Friction 9(6): 1558–1567 (2021)

Google Scholar 

Lou M, White D R, Banerji A, Alpas A T. Dry and lubricated friction behaviour of thermal spray low carbon steel coatings: Effect of oxidational wear. Wear 432–433: 102921 (2019)

Google Scholar 

Lou M, Alpas A T. High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications. Wear 426–427: 443–453 (2019)

Google Scholar 

Yang R, Ma W, Duan C J, Li S, Wang T M, Wang Q H. Self-lubrication of tribologically-induced oxidation during dry reciprocating sliding of aged Ti-Ni51.5 at% alloy. Friction 9(5): 1038–1049 (2021)

Google Scholar 

Fink M. Wear oxidation—A new component of wear. T Am Soc Steel Treating 18:1026–1034 (1930)

Google Scholar 

Stott F H. The role of oxidation in the wear of alloys. Tribol Int 31(1–3): 61–71 (1998)

Google Scholar 

Cui X H, Wang S Q, Wang F, Chen K M. Research on oxidation wear mechanism of the cast steels. Wear 265(3–4): 468–476 (2008)

Google Scholar 

Childs T H C. The sliding wear mechanisms of metals, mainly steels. Tribol Int 13(6): 285–293 (1980)

Google Scholar 

Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N. Tribology in metal forming at elevated temperatures. Friction 3(1): 1–27 (2015)

Google Scholar 

Dong X, Jahanmir S. Wear transition diagram for silicon nitride. Wear 165(2): 169–180 (1993)

Google Scholar 

Zhou Z, Rainforth W M, Luo Q, Hovsepian P E, Ojeda J J, Romero-Gonzalez M E. Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures. Acta Mater 58(8): 2912–2925 (2010)

Google Scholar 

Javdošňák D, Musil J, Soukup Z, Haviar S, Čerstvý R, Houska J. Tribological properties and oxidation resistance of tungsten and tungsten nitride films at temperatures up to 500 °C. Tribol Int 132: 211–220 (2019)

Google Scholar 

Moghaddam P V, Prakash B, Vuorinen E, Fallqvist M, Andersson J M, Hardell J. High temperature tribology of TiAlN PVD coating sliding against 316L stainless steel and carbide-free bainitic steel. Tribol Int 159: 106847 (2021)

Google Scholar 

Magnéli A. Structures of the ReO3-type with recurrent dislocations of atoms: “Homologous series” of molybdenum and tungsten oxides. Acta Crystallogr 6: 495–500 (1953)

Google Scholar 

Woydt M, Skopp A, Dörfel I, Witke K. Wear engineering oxides/anti-wear oxides. Wear 218(1): 84–95 (1998)

Google Scholar 

Migas D B, Shaposhnikov V L, Borisenko V E. Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 108(9): 093714 (2010)

Google Scholar 

Liu Y L, Wang Z X, Sun Q C, Yin B, Cheng J, Zhu S Y, Yang J, Qiao Z H, Liu W M. Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800 °C in vacuum and air environment. Int J Refract Met Hard Mater 71: 160–166 (2018)

Google Scholar 

Lugscheider E, Knotek O, Bobzin K, Bärwulf S. Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications. Surf Coat Technol 133–134: 362–368 (2000)

Google Scholar 

Suszko T, Gulbiński W, Jagielski J. The role of surface oxidation in friction processes on molybdenum nitride thin films. Surf Coat Technol 194(2–3): 319–324 (2005)

Google Scholar 

Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6): 1564–1583 (1992)

Google Scholar 

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 136(3B): B864–B871 (1964)

MathSciNet  Google Scholar 

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49(20): 14251–14269 (1994)

Google Scholar 

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3): 1758–1775 (1999)

Google Scholar 

Blöchl P E. Projector augmented-wave method. Phys Rev B 50(24): 17953–17979 (1994)

Google Scholar 

Predel F. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys. Heidelberg (Germany): Springer Berlin Heidelberg, 2016.

Google Scholar 

Huang W M. Thermodynamic assessment of the Nb—N system. Metall Mater Trans A 27(11): 3591–3600 (1996)

Google Scholar 

Miao K F, Wang J, Zhao Q, Wang K W, Wen M, Zhang K. Water-based lubrication of niobium nitride. Friction 10(6): 842–853 (2022)

Google Scholar 

Lin J L, Moore J J, Mishra B, Pinkas M, Sproul W D. The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Mater 58(5): 1554–1564 (2010)

Google Scholar 

Leyland A, Matthews A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2): 1–11 (2000)

Google Scholar 

Archard J F, Hirst W. The wear of metals under unlubricated conditions. Proc Roy Soc A Math Phy Sci 236(1206): 397–410 (1956)

Google Scholar 

Hutchings I, Shipway P. Tribology: Friction and Wear of Engineering Materials, 2nd edn. Oxford (UK): Butterworth-Heinemann, 2017.

Google Scholar 

Hampl M, Schmid-Fetzer R. Thermodynamic description of the Ti-O system. Int J Mater Res 106(5): 439–453 (2015)

Google Scholar 

Erb U, Palumbo G, McCrea J L. The processing of bulk nanocrystaline metals and alloys by electrodeposition. In: Nanostructured Metals and Alloys: Processing, microstructure, mechanical properties and applications, Whang S H, Ed. Cambridge (UK): Woodhead Publishing, 2011: 118–151.

Google Scholar 

Li Y, Song K F. Study on manufacture process, micro-hardness and Hall-Petch relation of pure rutile phase TiO2 MAO coating. Appl Mech Mater 738–739: 175–179 (2015)

Google Scholar 

Bahador A, Umeda J, Hamzah E, Yusof F, Li X C, Kondoh K. Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles. Mater Sci Eng A 772: 138797 (2020)

Google Scholar 

Chen J, Lu D Y, Zhang W H, Xie F Y, Zhou J, Gong L, Liu X, Deng S Z, Xu N S. Synthesis and Raman spectroscopic study of W20O58 nanowires. J Phys D Appl Phys 41(11): 115305 (2008)

Google Scholar 

Sun L, Li Z, Su R, Wang Y L, Li Z L, Du B S, Sun Y, Guan P F, Besenbacher F, Yu M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy. Angew Chem Int Ed 57(33): 10666–10671 (2018)

Google Scholar 

Pirker L, Višić B, Škapin S D, Dražić G, KovaČ J, Remškar M. Multi-stoichiometric quasi-two-dimensional WnO3n−1 tungsten oxides. Nanoscale 12(28): 15102–15114 (2020)

Google Scholar 

Wriedt H A. The O-W (oxygen-tungsten) system. Bull Alloy Phase Diagr 10(4): 368–384 (1989)

Google Scholar 

Kutschej K, Mayrhofer P H, Kathrein M, Polcik P, Mitterer C. A new low-friction concept for Ti1−xAlxN based coatings in high-temperature applications. Surf Coat Technol 188–189: 358–363 (2004)

Google Scholar 

Reeswinkel T, Music D, Schneider J M. Coulomb-potential-dependent decohesion of magnéli phases. J Phys Condens Matter 22(29): 292203 (2010)

Google Scholar 

Lugscheider E, Bärwulf S, Barimani C. Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications. Surf Coat Technol 120–121: 458–464 (1999)

Google Scholar 

Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. Magnéli phase formation of PVD Mo-N and W-N coatings. Surf Coat Technol 201(6): 3335–3341 (2006)

Google Scholar 

Zhang J, Li M J, Feng Z C, Chen J, Li C. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110(2): 927–935 (2006)

Google Scholar 

Polcar T, Parreira N M G, Cavaleiro A. Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear 265(3–4): 319–326 (2008)

Google Scholar 

Xu K, Chang K K, Yu M, Zhou D P, Du Y, Wang L P. Design of novel NiSiAlY alloys in marine salt-spray environment: Part II. Al-Ni-Si-Y thermodynamic dataset. J Mater Sci Technol 89: 186–198 (2021)

留言 (0)

沒有登入
gif