Preoperative administration of branched-chain amino acids reduces postoperative insulin resistance in rats by reducing liver gluconeogenesis

Li L, Messina JL. Acute insulin resistance following injury. Trends Endocrinol Metab. 2009;20:429–35. https://doi.org/10.1016/j.tem.2009.06.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thorell A, Efendic S, Gutniak M, Haggmark T, Ljungqvist O. Insulin resistance after abdominal surgery. Br J Surg. 1994;81:59–63. https://doi.org/10.1002/bjs.1800810120.

Article  CAS  PubMed  Google Scholar 

Shakeshaft AJ, Scanlon K, Eslick GD, Azmir A, Cox MR. Post-operative glycaemic control using an insulin infusion is associated with reduced surgical site infections in colorectal surgery. World J Surg. 2020;44:3491–500. https://doi.org/10.1007/s00268-020-05596-x.

Article  PubMed  Google Scholar 

van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

Article  PubMed  Google Scholar 

Ljungqvist O. Insulin resistance and outcomes in surgery. J Clin Endocrinol Metab. 2010;95:4217–9. https://doi.org/10.1210/jc.2010-1525.

Article  CAS  PubMed  Google Scholar 

Thorell A, Nygren J, Ljungqvist O. Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care. 1999;2:69–78.

Article  CAS  PubMed  Google Scholar 

Sato H, Carvalho G, Sato T, Lattermann R, Matsukawa T, Schricker T. The association of preoperative glycemic control, intraoperative insulin sensitivity, and outcomes after cardiac surgery. J Clin Endocrinol Metab. 2010;95:4338–44. https://doi.org/10.1210/jc.2010-0135.

Article  CAS  PubMed  Google Scholar 

Gianotti L, Biffi R, Sandini M, Marrelli D, Vignali A, Caccialanza R, Vigano J, Sabbatini A, Di Mare G, Alessiani M, et al. Preoperative oral carbohydrate load versus placebo in major elective abdominal surgery (PROCY): a randomized, placebo-controlled, multicenter. Phase III Trial Ann Surg. 2018;267:623–30. https://doi.org/10.1097/SLA.0000000000002325.

Article  PubMed  Google Scholar 

Blixt C, Larsson M, Isaksson B, Ljungqvist O, Rooyackers O. The effect of glucose control in liver surgery on glucose kinetics and insulin resistance. Clin Nutr. 2021;40:4526–34. https://doi.org/10.1016/j.clnu.2021.05.017.

Article  CAS  PubMed  Google Scholar 

van Stijn MFM, Soeters MR, van Leeuwen PAM, Schreurs WH, Schoorl MG, Twisk JWR, De Bandt J-P, Bonnefont-Rousselot D, Cynober L, Ackermans MT, et al. Effects of a carbohydrate-, glutamine-, and antioxidant-enriched oral nutrition supplement on major surgery-induced insulin resistance: a randomized pilot study. JPEN J Parenter Enteral Nutr. 2018;42:719–29. https://doi.org/10.1177/0148607117711691.

Article  CAS  PubMed  Google Scholar 

Holecek M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab. 2018;15:33. https://doi.org/10.1186/s12986-018-0271-1.

Article  CAS  Google Scholar 

Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010;68:270–9. https://doi.org/10.1111/j.1753-4887.2010.00282.x.

Article  PubMed  Google Scholar 

White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261. https://doi.org/10.1016/j.molmet.2021.101261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manders RJ, Little JP, Forbes SC, Candow DG. Insulinotropic and muscle protein synthetic effects of branched-chain amino acids: potential therapy for type 2 diabetes and sarcopenia. Nutrients. 2012;4:1664–78. https://doi.org/10.3390/nu4111664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Rielly R, Li H, Lim SM, Yazbeck R, Kritas S, Ullrich SS, Feinle-Bisset C, Heilbronn L, Page AJ. The effect of isoleucine supplementation on body weight gain and blood glucose response in lean and obese mice. Nutrients. 2020;12:2446. https://doi.org/10.3390/nu12082446.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs CJ, Hermans WJH, Holwerda AM, Smeets JSJ, Senden JM, van Kranenburg J, Gijsen AP, Wodzig W, Schierbeek H, Verdijk LB, van Loon LJC. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial. Am J Clin Nutr. 2019;110:862–72. https://doi.org/10.1093/ajcn/nqz120.

Article  PubMed  PubMed Central  Google Scholar 

Roquetto AR, Moura CS, de Almeida S-J, Oliveira POS, Machado KIA, Carvalho G, Risso EM, Amaya-Farfan J. Moderate intake of BCAA-rich protein improves glucose homeostasis in high-fat-fed mice. J Nutr Biochem. 2020;80:108332. https://doi.org/10.1016/j.jnutbio.2019.108332.

Article  CAS  PubMed  Google Scholar 

Ardito F, Lai Q, Rinninella E, Mimmo A, Vellone M, Panettieri E, Adducci E, Cintoni M, Mele MC, Gasbarrini A, Giuliante F. The impact of personalized nutritional support on postoperative outcome within the enhanced recovery after surgery (ERAS) program for liver resections: results from the NutriCatt protocol. Updat Surg. 2020. https://doi.org/10.1007/s13304-020-00787-6.

Article  Google Scholar 

Arrieta-Cruz I, Su Y, Gutierrez-Juarez R. Suppression of endogenous glucose production by isoleucine and valine and impact of diet composition. Nutrients. 2016;8:79. https://doi.org/10.3390/nu8020079.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadota Y, Kazama S, Bajotto G, Kitaura Y, Shimomura Y. Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats. JPEN J Parenter Enteral Nutr. 2012;36:337–43. https://doi.org/10.1177/0148607111414578.

Article  CAS  PubMed  Google Scholar 

Eller LK, Saha DC, Shearer J, Reimer RA. Dietary leucine improves whole-body insulin sensitivity independent of body fat in diet-induced obese Sprague-Dawley rats. J Nutr Biochem. 2013;24:1285–94. https://doi.org/10.1016/j.jnutbio.2012.10.004.

Article  CAS  PubMed  Google Scholar 

Horiuchi M, Takeda T, Takanashi H, Ozaki-Masuzawa Y, Taguchi Y, Toyoshima Y, Otani L, Kato H, Sone-Yonezawa M, Hakuno F, et al. Branched-chain amino acid supplementation restores reduced insulinotropic activity of a low-protein diet through the vagus nerve in rats. Nutr Metab. 2017;14:59. https://doi.org/10.1186/s12986-017-0215-1.

Article  CAS  Google Scholar 

Kawaguchi T, Taniguchi E, Itou M, Sumie S, Oriishi T, Matsuoka H, Nagao Y, Sata M. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int. 2007;27:1287–92. https://doi.org/10.1111/j.1478-3231.2007.01559.x.

Article  CAS  PubMed  Google Scholar 

Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Koorbanally NA, Islam MS. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo. Amino Acids. 2021;53:1135–51. https://doi.org/10.1007/s00726-021-03021-8.

Article  CAS  PubMed  Google Scholar 

Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, Gilbuena I, Thames G, Huang J, Rasmussen A, et al. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr. 2019;109:1569–77. https://doi.org/10.1093/ajcn/nqz024.

Article  PubMed  PubMed Central  Google Scholar 

Doi M, Yamaoka I, Fukunaga T, Nakayama M. Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun. 2003;312:1111–7. https://doi.org/10.1016/j.bbrc.2003.11.039.

Article  CAS  PubMed  Google Scholar 

Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007;292:E1683-1693. https://doi.org/10.1152/ajpendo.00609.2006.

Article  CAS  PubMed  Google Scholar 

Yoshizawa F. New therapeutic strategy for amino acid medicine: notable functions of branched chain amino acids as biological regulators. J Pharmacol Sci. 2012;118:149–55. https://doi.org/10.1254/jphs.11r05fm.

Article  CAS  PubMed  Google Scholar 

Zhang S, Yang Q, Ren M, Qiao S, He P, Li D, Zeng X. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br J Nutr. 2016;116:593–602. https://doi.org/10.1017/S0007114516002439.

Article  CAS  PubMed  Google Scholar 

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26. https://doi.org/10.1016/j.cmet.2009.02.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes. 2018;10:357–64. https://doi.org/10.1111/1753-0407.12639.

Article  CAS  PubMed  Google Scholar 

Gianotti L, Sandini M, Hackert T. Preoperative carbohydrates: what is new? Curr Opin Clin Nutr Metab Care. 2020;23:262–70. https://doi.org/10.1097/MCO.0000000000000661.

Article  PubMed  Google Scholar 

Karimian N, Kaneva P, Donatelli F, Stein B, Liberman AS, Charlebois P, Lee L, Fiore JF, Carli F, Feldman LS. Simple versus complex preoperative carbohydrate drink to preserve perioperative insulin sensitivity in laparoscopic colectomy: a Randomized controlled trial. Ann Surg. 2020;271:819–26. https://doi.org/10.1097/SLA.0000000000003488.

Article  PubMed 

留言 (0)

沒有登入
gif