Mesenchymal Stem Cell Identification After Delayed Cord Clamping

Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176:57–66. https://doi.org/10.1002/(SICI)1097-4652(199807)176:1%3c57::AID-JCP7%3e3.0.CO;2-7.

Article  CAS  PubMed  Google Scholar 

Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 2012;3:57. https://doi.org/10.1186/scrt148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant. 2014;23:493–6. https://doi.org/10.3727/096368914X678300.

Article  PubMed  Google Scholar 

Christodoulou I, Kolisis FN, Papaevangeliou D, Zoumpourlis V. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int. 2013;2013:246134. https://doi.org/10.1155/2013/246134.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301–9. https://doi.org/10.2174/157488807782793790.

Article  CAS  PubMed  Google Scholar 

Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther. 2007;9:301. https://doi.org/10.1186/ar2103.

Article  PubMed  PubMed Central  Google Scholar 

Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8. https://doi.org/10.1016/s0301-472x(01)00769-x.

Article  PubMed  Google Scholar 

Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41. https://doi.org/10.1016/S0140-6736(04)16104-7.

Article  PubMed  Google Scholar 

Wu XQ, Yan TZ, Wang ZW, Wu X, Cao GH, Zhang C. BM-MSCs-derived microvesicles promote allogeneic kidney graft survival through enhancing micro-146a expression of dendritic cells. Immunol Lett. 2017;191:55–62. https://doi.org/10.1016/j.imlet.2017.09.010.

Article  CAS  PubMed  Google Scholar 

Pappas A, Shankaran S, McDonald SA, Vohr BR, Hintz SR, Ehrenkranz RA, et al. Hypothermia extended follow-up subcommittee of the Eunice Kennedy Shriver NICHD Neonatal Research Network Cognitive outcomes after neonatal encephalopathy. Pediatrics. 2015;135:e624–34. https://doi.org/10.1542/peds.2014-1566.

Article  PubMed  PubMed Central  Google Scholar 

Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun. 2017;60:220–32. https://doi.org/10.1016/j.bbi.2016.11.011.

Article  CAS  PubMed  Google Scholar 

Wagenaar N, Nijboer CH, van Bel F. Repair of neonatal brain injury: bringing stem cell-based therapy into clinical practice. Dev Med Child Neurol. 2017;59:997–1003. https://doi.org/10.1111/dmcn.13528.

Article  PubMed  Google Scholar 

Paton MCB, McDonald CA, Allison BJ, Fahey MC, Jenkin G, Miller SL. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: designing targeted stem cell therapies. Front Neurosci. 2017;11:200. https://doi.org/10.3389/fnins.2017.00200.

Article  PubMed  PubMed Central  Google Scholar 

Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91:1017–26.

CAS  PubMed  Google Scholar 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

Article  CAS  PubMed  Google Scholar 

Sibov TT, Severino P, Marti LC, Pavon LF, Oliveira DM, Tobo PR, et al. Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology. 2012;64:511–21. https://doi.org/10.1007/s10616-012-9428-3.

Article  PubMed  PubMed Central  Google Scholar 

Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica. 2001;86:1099–100.

CAS  PubMed  Google Scholar 

Erices A, Conget P, Minguell J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

Article  CAS  PubMed  Google Scholar 

Javed MJ, Mead LE, Prater D, Bessler WK, Foster D, Case J, et al. Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr Res. 2008;64:68–73. https://doi.org/10.1203/PDR.0b013e31817445e9.

Article  PubMed  Google Scholar 

Kc A, Rana N, Målqvist M, Jarawka Ranneberg L, Subedi K, Andersson O. Effects of delayed umbilical cord clamping vs early clamping on anemia in infants at 8 and 12 months. JAMA Pediatr. 2017;171:264. https://doi.org/10.1001/jamapediatrics.2016.3971.

Article  PubMed  Google Scholar 

American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice. Delayed umbilical cord clamping after birth: ACOG Committee Opinion, Number 814. Obstet Gynecol. 2020;136:e100–6. https://doi.org/10.1097/AOG.0000000000004167.

Article  Google Scholar 

Allan DS, Scrivens N, Lawless T, Mostert K, Oppenheimer L, Walker M, et al. Delayed clamping of the umbilical cord after delivery and implications for public cord blood banking. Transfusion. 2016;56:662–5. https://doi.org/10.1111/trf.13424.

Article  PubMed  Google Scholar 

Podestà M, Bruschettini M, Cossu C, Sabatini F, Dagnino M, Romantsik O, et al. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples. PLoS One. 2015;10(9):e0138680. https://doi.org/10.1371/journal.pone.0138680.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem. 2011;112:1206–18. https://doi.org/10.1002/jcb.23042.

Article  CAS  PubMed  Google Scholar 

Mansilla E, Marín GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 2006;38:967–9. https://doi.org/10.1016/j.transproceed.2006.02.053.

Article  CAS  PubMed  Google Scholar 

Frändberg S, Waldner B, Konar J, Rydberg L, Fasth A, Holgersson J. High quality cord blood banking is feasible with delayed clamping practices. The eight-year experience and current status of the national Swedish Cord Blood Bank. Cell Tissue Bank. 2016;17:439–48. https://doi.org/10.1007/s10561-016-9565-6.

Article  PubMed  Google Scholar 

Park WS, Sung SI, Ahn SY, Yoo HS, Sung DK, Im GH, et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. Baud O, ed. PLoS ONE. 2015;10(3):e0120893. https://doi.org/10.1371/journal.pone.0120893.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, et al. Optimal Route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS ONE. 2015;10(7):e0132919. https://doi.org/10.1371/journal.pone.0132919.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21. https://doi.org/10.1186/1479-5876-11-21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif