How Can Climate Change Limit the Distribution of Cooperative Pseudoscorpions in Brazil?

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/tac.1974.1100705

Article  Google Scholar 

Alan Pounds J et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167. https://doi.org/10.1038/nature04246

Article  CAS  PubMed  Google Scholar 

Aleixo A, Albernaz AL, Grelle CEV, Vale MM, Rangel TF (2010) Mudanças climáticas e a biodiversidade dos biomas brasileiros: passado, presente e futuro. Naturza Conservação 8:194–196. https://doi.org/10.4322/natcon.00802016

Article  Google Scholar 

Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x

Article  Google Scholar 

Argañaraz CI, Gleiser RM (2020) Are spider communities influenced by urbanisation? An approach using species and guilds resolutions and their interaction with the anthropogenic environment. J Nat Hist 54:2687–2702. https://doi.org/10.1080/00222933.2020.1863496

Article  Google Scholar 

Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19. https://doi.org/10.1016/j.ecolmodel.2006.07.005

Article  Google Scholar 

Ávila LF, Mello CRD, Pinto LC, Silva AMD (2014) Partição da precipitação pluvial em uma microbacia hidrográfica ocupada por mata atlântica na Serra da Mantiqueira, MG. Ciência Florestal 24:583–595. https://doi.org/10.5902/1980509815739

Article  Google Scholar 

Barros YJ et al (2010) Indicadores de qualidade de solos de área de mineração e metalurgia de chumbo: II — mesofauna e plantas. Rev Bras Cienc Solo 34:1413–1426. https://doi.org/10.1590/s0100-06832010000400037

Article  CAS  Google Scholar 

Bedoya-Roqueme EDJ, Quirós-Rodríguez JA (2019) Pseudoscorpiones (Arachnida) de Isla Fuerte y Tortuguilla, caribe colombiano. Acta Biol Colomb 24:163–173. https://doi.org/10.15446/abc.v24n1.70560

Article  Google Scholar 

Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R! Springer, New York. https://doi.org/10.1007/978-1-4419-7976-6

Bosc C, Hui C, Roets F, Pauw A (2019) Importance of biotic niches versus drift in a plant-inhabiting arthropod community depends on rarity and trophic group. Ecography 42:1926–1935. https://doi.org/10.1111/ecog.04396

Article  Google Scholar 

Bousquets JL, Morrone JJ, Ordóñez OY, Fernández IV (1996) Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento, vol 3. Universidad Nacional Autónoma de México, México

Google Scholar 

Brun P, Stamieszkin K, Visser AW, Licandro P, Payne MR, Kiørboe T (2019) Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat Ecol Evol 3:416–423. https://doi.org/10.1038/s41559-018-0780-3

Article  PubMed  Google Scholar 

Cardoso da Silva JM, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. Bioscience 52:225–234. https://doi.org/10.1641/0006-3568(2002)052[0225:Bpacit]2.0.Co;2

Article  Google Scholar 

Carlos-Júnior LA, Barbosa NPU, Moulton TP, Creed JC (2015) Ecological niche model used to examine the distribution of an invasive, non-indigenous coral. Mar Environ Res 103:115–124. https://doi.org/10.1016/j.marenvres.2014.10.004

Article  CAS  PubMed  Google Scholar 

Cavalcanti R, Joly C (2002) The conservation of the Cerrados. In: Oliveira PS, Marquis RJ (eds) The Cerrado of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 351–367

Google Scholar 

Chase JM, Leibold M (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

Book  Google Scholar 

Clappe S, Dray S, Peres-Neto PR (2018) Beyond neutrality: disentangling the effects of species sorting and spurious correlations in community analysis. Ecology 99:1737–1747. https://doi.org/10.1002/ecy.2376

Article  PubMed  Google Scholar 

Classen-Rodríguez L, Tinghitella R, Fowler-Finn K (2021) Anthropogenic noise affects insect and arachnid behavior, thus changing interactions within and between species. Curr Opin Insect Sci 47:142–153. https://doi.org/10.1016/j.cois.2021.06.005

Article  PubMed  Google Scholar 

Coelho AJP, Magnago LFS, Matos FAR, Mota NM, Diniz ÉS, Meira-Neto JAA (2020) Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodivers Conserv 29:3151–3168. https://doi.org/10.1007/s10531-020-02013-6

Article  Google Scholar 

Colli GR, Vieira CR, Dianese JC (2020) Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodivers Conserv 29:1465–1475. https://doi.org/10.1007/s10531-020-01967-x

Article  Google Scholar 

Costa H, Medeiros V, Azevedo EB, Silva L (2013) Evaluating ecological-niche factor analysis as a modelling tool for environmental weed management in island systems. Weed Res 53:221–230. https://doi.org/10.1111/wre.12017

Article  Google Scholar 

Del-Claro K, Tizo-Pedroso E (2009) Ecological and evolutionary pathways of social behavior in Pseudoscorpions (Arachnida: Pseudoscorpiones). Acta Ethologica 12:13–22. https://doi.org/10.1007/s10211-009-0052-y

Article  Google Scholar 

Diamond SE et al (2012) A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93:2305–2312. https://doi.org/10.1890/11-2296.1

Article  PubMed  Google Scholar 

Dias BFS (1992) Alternativas de desenvolvimento dos Cerrados: manejo e conservação dos recursos naturais renováveis. IBAMA, FUNATURA, Brasília, Brazil

Díaz S et al (2016) The global spectrum of plant form and function. Nature 529:167–171. https://doi.org/10.1038/nature16489

Article  CAS  PubMed  Google Scholar 

Ekstrom M, Grose MR, Whetton PH (2015) An appraisal of downscaling methods used in climate change research. Wiley Interdiscip Rev Clim Chang 6:301–319. https://doi.org/10.1002/wcc.339

Article  Google Scholar 

Emiliano PC (2014) Fundamentos e aplicações dos critérios de informação: Akaike e Bayesiano. Universidade Federal de Lavras, Lavras, Brasil

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Article  Google Scholar 

Feng X, Park DS, Liang Y, Pandey R, Papeş M (2019) Collinearity in ecological niche modeling: confusions and challenges. Ecol Evol 9:10365–10376. https://doi.org/10.1002/ece3.5555

Article  PubMed  PubMed Central  Google Scholar 

Foden WB et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8:e65427. https://doi.org/10.1371/journal.pone.0065427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganem RS, Drummond JA, Franco JLDA (2013) Conservation polices and control of habitat fragmentation in the Brazilian Cerrado biome. Ambiente Soc 16:99–118. https://doi.org/10.1590/s1414-753x2013000300007

Article  Google Scholar 

Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433. https://doi.org/10.2307/4072271

Article  Google Scholar 

Guisan A, Rahbek C (2011) SESAM — a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x

Article  Google Scholar 

Harrison XA et al (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794. https://doi.org/10.7717/peerj.4794

Article  PubMed  PubMed Central  Google Scholar 

Harvey MS (2013a) Order Pseudoscorpiones. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa vol 3703. vol 1:34–35. https://doi.org/10.11646/zootaxa.3703.1.8

Harvey MS (2013b) Pseudoscorpions of the world. Western Australian Museum, Perth. http://www.museum.wa.gov.au/catalogues/pseudoscorpions. Accessed 27 Oct 2015

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

Article  Google Scholar 

Hijmans RJ, Philips S, Leathwick J, Elith J (2020) Dismo: species distribution modelling. https://CRAN.R-project.org/package=dismo

Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036. https://doi.org/10.1890/0012-9658(2002)083[2027:Enfaht]2.0.Co;2

Article  Google Scholar 

Hutchinson GE (1957) Population studies — animal ecology and demography — concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427. https://doi.org/10.1101/sqb.1957.022.01.039

Article  Google Scholar 

IBGE (2018) Instituto Brasileiro de Geografia E Estatística. Área Territorial-2018. DOU nº 53 de 19/03/2019, Resolução Nº 01, de 18 de março de 2019. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?=et=o-que-e. Accessed 11 Nov 2019

James FC, Johnston RF, Wamer NO, Niemi GJ, Boecklen WJ (1984) The Grinnellian niche of the wood thrush. Am Nat 124:17–30. https://doi.org/10.1086/284250

Article  Google Scholar 

Judson MLI (2016) Pseudoscorpions (Arachnida, Chelonethi) in Mexican amber, with a list of extant species associated with mangrove and Hymenaea trees in Chiapas. Bol Soc Geol Mex 68:57–79

Article  Google Scholar 

Kensler CB (1967) Desiccation resistance of intertidal crevice species as a factor in their zonation. J Anim Ecol 36:391

Article  Google Scholar 

Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

Article  Google Scholar 

Lee VF (1979) The marine pseudoscorpions of Baja California, Mexico (Arachnida: Pseudoscorpionida). Calif Acad Sci Occ Pap 131:1–38

Google Scholar 

Lencinas MV, Kreps G, Soler R, Peri PL, Porta A, Ramírez M, Pastur GM (2015) Neochelanops michaelseni (Pseudoscorpiones: Chernetidae) as a potential bioindicator in managed and unmanaged Nothofagus forests of Tierra del Fuego. J Arachnol 43:406–412. https://doi.org/10.1636/0161-8202-43.3.406

Article  Google Scholar 

Li F, He H (2018) Assessing the accuracy of diagnostic tests. Shanghai Arch Psychiatry 30:207–212. https://doi.org/10.11919/j.issn.1002-0829.218052

Article  PubMed  PubMed Central  Google Scholar 

Lira AFA, Pordeus LM, Salomão RP, Badillo-Montaño R, Albuquerque CMR (2019) Effects of anthropogenic land-use on scorpions (Arachnida: Scorpiones) in Neotropical forests. Int J Trop Insect Sci 39:211–218. https://doi.org/10.1007/s42690-019-00029-2

Article  Google Scholar 

Mahnert V (1993a)Els pseudoscorpins (Arachnida, pseudoscorpiones). In: Alcover JA, Ballesteros E, Fornós JJ (eds) Història Natural de l’Arxipèlag de Cabrera,. Consell Superior de Investigacions Cientifiques, Editorial Moll: Mallorca, pp 355–360

Mahnert V (1993) Pseudoskorpione (Arachnida: Pseudoscorpiones) von Inseln des Mittelmeers und des Atlantiks (Balearen, Kanarische Inseln, Madeira, Ascension), mit vorwiegend subterraner Lebensweise. Rev Suisse Zool 100:971–992. https://doi.org/10.5962/bhl.part.79896

Article 

留言 (0)

沒有登入
gif