Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases

Hoffman EP (2020) The discovery of dystrophin, the protein product of the Duchenne muscular dystrophy gene. FEBS J 287:3879–3887. https://doi.org/10.1111/febs.15466

Article  Google Scholar 

Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17:251–267. https://doi.org/10.1016/S1474-4422(18)30024-3

Article  Google Scholar 

Kamdar F, Garry DJ (2016) Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol 67:2533–2546. https://doi.org/10.1016/j.jacc.2016.02.081

Article  Google Scholar 

Łoboda A, Dulak J (2020) Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 72:1227–1263. https://doi.org/10.1007/s43440-020-00134-x

Article  Google Scholar 

Kieny P, Chollet S, Delalande P et al (2013) Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann Phys Rehabil Med 56:443–454. https://doi.org/10.1016/j.rehab.2013.06.002

Article  Google Scholar 

Florczyk-Soluch U, Polak K, Dulak J (2021) The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell Mol Life Sci 78:5447–5468. https://doi.org/10.1007/s00018-021-03862-2

Article  Google Scholar 

Mercuri E, Bönnemann CG, Muntoni F (2019) Muscular dystrophies. Lancet 394:2025–2038. https://doi.org/10.1016/S0140-6736(19)32910-1

Article  Google Scholar 

Duan D, Goemans N, Takeda S et al (2021) Duchenne muscular dystrophy. Nat Rev Dis Prim 7:13. https://doi.org/10.1038/s41572-021-00248-3

Article  Google Scholar 

Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517. https://doi.org/10.1016/0092-8674(87)90504-6

Article  Google Scholar 

Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5:1223–1239. https://doi.org/10.1002/cphy.c140048

Article  Google Scholar 

Sironi M, Cagliani R, Pozzoli U et al (2002) The dystrophin gene is alternatively spliced throughout its coding sequence. FEBS Lett 517:163–166. https://doi.org/10.1016/S0014-5793(02)02613-3

Article  Google Scholar 

Ervasti JM (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772:108–117. https://doi.org/10.1016/j.bbadis.2006.05.010

Article  Google Scholar 

Bagchi A (2015) Domain wise distribution of mutations in dystrophin protein and Duchenne muscular dystrophy. Gene Technol. https://doi.org/10.4172/2329-6682.1000128

Article  Google Scholar 

Waldrop MA, Flanigan KM (2019) Update in Duchenne and Becker muscular dystrophy. Curr Opin Neurol 32:722–727. https://doi.org/10.1097/WCO.0000000000000739

Article  Google Scholar 

Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 1838:635–642. https://doi.org/10.1016/j.bbamem.2013.08.023

Article  Google Scholar 

Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

Article  Google Scholar 

Hathout Y, Brody E, Clemens PR et al (2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 112:7153–7158. https://doi.org/10.1073/pnas.1507719112

Article  Google Scholar 

Jackson MJ, Jones DA, Edwards RH (1985) Measurements of calcium and other elements in muscle biopsy samples from patients with Duchenne muscular dystrophy. Clin Chim Acta 147:215–221. https://doi.org/10.1016/0009-8981(85)90202-5

Article  Google Scholar 

Robert V, Massimino ML, Tosello V et al (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276:4647–4651. https://doi.org/10.1074/jbc.M006337200

Article  Google Scholar 

Law ML, Cohen H, Martin AA et al (2020) Dysregulation of calcium handling in duchenne muscular dystrophy-associated dilated cardiomyopathy: mechanisms and experimental therapeutic strategies. J Clin Med 9:520. https://doi.org/10.3390/jcm9020520

Article  Google Scholar 

van Westering T, Betts C, Wood M (2015) Current understanding of molecular pathology and treatment of cardiomyopathy in Duchenne muscular dystrophy. Molecules 20:8823–8855. https://doi.org/10.3390/molecules20058823

Article  Google Scholar 

Starosta A, Konieczny P (2021) Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci 78:4867–4891. https://doi.org/10.1007/s00018-021-03821-x

Article  Google Scholar 

Tidball JG, Welc SS, Wehling-Henricks M (2018) Immunobiology of inherited muscular dystrophies. Compr Physiol 8:1313–1356. https://doi.org/10.1002/cphy.c170052

Article  Google Scholar 

Rosenberg AS, Puig M, Nagaraju K et al (2015) Immune-mediated pathology in Duchenne muscular dystrophy. Science Transl Med 7:299rv4–299rv4. https://doi.org/10.1126/scitranslmed.aaa7322

Juban G, Saclier M, Yacoub-Youssef H et al (2018) AMPK activation regulates LTBP4-dependent TGF-β1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep 25:2163-2176.e6. https://doi.org/10.1016/j.celrep.2018.10.077

Article  Google Scholar 

Mann CJ, Perdiguero E, Kharraz Y et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21. https://doi.org/10.1186/2044-5040-1-21

Article  Google Scholar 

Magrath P, Maforo N, Renella P et al (2018) Cardiac MRI biomarkers for Duchenne muscular dystrophy. Biomark Med 12:1271–1289. https://doi.org/10.2217/bmm-2018-0125

Article  Google Scholar 

Natarajan A, Lemos DR, Rossi FMV (2010) Fibro/adipogenic progenitors: a double-edged sword in skeletal muscle regeneration. Cell Cycle 9:2045–2046. https://doi.org/10.4161/cc.9.11.11854

Article  Google Scholar 

Grounds MD, Terrill JR, Al-Mshhdani BA et al (2020) Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech 13:dmm043638. https://doi.org/10.1242/dmm.043638

von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110:16474–16479. https://doi.org/10.1073/pnas.1307680110

Article  Google Scholar 

Dumont NA, Wang YX, von Maltzahn J et al (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463. https://doi.org/10.1038/nm.3990

Article  Google Scholar 

Kottlors M, Kirschner J (2010) Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 340:541–548. https://doi.org/10.1007/s00441-010-0976-6

Article  Google Scholar 

Sacco A, Mourkioti F, Tran R et al (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143:1059–1071. https://doi.org/10.1016/j.cell.2010.11.039

Article  Google Scholar 

Bronisz-Budzyńska I, Chwalenia K, Mucha O et al (2019) miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle 9:22. https://doi.org/10.1186/s13395-019-0207-0

Article  Google Scholar 

Bronisz-Budzyńska I, Kozakowska M, Podkalicka P et al (2020) The role of Nrf2 in acute and chronic muscle injury. Skelet Muscle 10:35. https://doi.org/10.1186/s13395-020-00255-0

Article  Google Scholar 

Mucha O, Podkalicka P, Kaziród K et al (2021) Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skelet Muscle 11:21. https://doi.org/10.1186/s13395-021-00276-3

Article  Google Scholar 

De Palma C, Morisi F, Cheli S et al (2014) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 5:e1363. https://doi.org/10.1038/cddis.2014.312

Article  Google Scholar 

Spitali P, Grumati P, Hiller M et al (2013) Autophagy is impaired in the tibialis anterior of dystrophin null mice. PLoS Curr 5:ecurrents.md.e1226cefa851a2f079bbc406c0a21e80. https://doi.org/10.1371/currents.md.e1226cefa851a2f079bbc406c0a21e80

Chang NC, Sincennes M-C, Chevalier FP et al (2018) The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment. Cell Stem Cell 22:755-768.e6. https://doi.org/10.1016/j.stem.2018.03.022

Article  Google Scholar 

Shin H-JR, Kim H, Oh S et al (2016) AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534:553–557. https://doi.org/10.1038/nature18014

Article  Google Scholar 

Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126:5325–5333. https://doi.org/10.1242/jcs.114041

Article  Google Scholar 

Mucha O, Kaziród K, Podkalicka P et al (2021) Dysregulated autophagy and mitophagy in a mouse model of duchenne muscular dystrophy remain unchanged following heme oxygenase-1 knockout. Int J Mol Sci 23:470. https://doi.org/10.3390/ijms23010470

Article  Google Scholar 

Giménez-Xavier P, Francisco R, Platini F et al (2008) LC3-I conversion to LC3-II does not necessarily result in complete autophagy. Int J Mol Med 22:781–785

Google Scholar 

Moore TM, Lin AJ, Strumwasser AR et al (2020) Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice. Front Physiol 11:690. https://doi.org/10.3389/fphys.2020.00690

Article  Google Scholar 

Vasconcellos LR, Siqueira MS, Moraes R et al (2018) Heme oxygenase-1 and autophagy linked for cytoprotection. Curr Pharm Des 24:2311–2316. https://doi.org/10.2174/1381612824666180727100909

Article  Google Scholar 

Kang C, Badr MA, Kyrychenko V et al (2018) Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovasc Res 114:90–102. https://doi.org/10.1093/cvr/cvx201

Article  Google Scholar 

Luan P, D’Amico D, Andreux PA et al (2021) Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med 13:eabb0319. https://doi.org/10.1126/scitranslmed.abb0319

Kuno A, Hosoda R, Sebori R et al (2018) Resveratrol ameliorates mitophagy disturbance and improves cardiac pathophysiology of dystrophin-deficient mdx mice. Sci Rep 8:15555. https://doi.org/10.1038/s41598-018-33930-w

Article  Google Scholar 

Pauly M, Daussin F, Burelle Y et al (2012) AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol 181:583–592. https://doi.org/10.1016/j.ajpath.2012.04.004

Article  Google Scholar 

Podkalicka P, Mucha O, Dulak J, Loboda A (2019) Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 76:1507–1528. https://doi.org/10.1007/s00018-019-03006-7

Article  Google Scholar 

Christov C, Chrétien F, Abou-Khalil R et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. MBoC 18:1397–1409. https://doi.org/10.1091/mbc.e06-08-0693

Article  Google Scholar 

Harricane M-C, Febris E, Lees D et al (1994) Dystrophin does not influence regular cytoskeletal architecture but is required for contractile performance in smooth muscle aortic cells. Cell Biol Int 18:947–958. https://doi.org/10.1006/cbir.1994.1015

Article  Google Scholar 

Loufrani L, Matrougui K, Gorny D et al (2001) Flow (shear stress)–induced endothelium-dependent dilation is altered in mice lacking the gene e

留言 (0)

沒有登入
gif