Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production

Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

Article  CAS  PubMed  Google Scholar 

Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

Article  CAS  Google Scholar 

Armaroli, N. & Balzani, V. Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32–57 (2016).

Article  CAS  PubMed  Google Scholar 

Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

Article  PubMed  Google Scholar 

White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

Article  CAS  PubMed  Google Scholar 

Schild, J. et al. Approaching industrially relevant current densities for hydrogen oxidation with a bioinspired molecular catalytic material. J. Am. Chem. Soc. 143, 18150–18158 (2021).

Article  CAS  PubMed  Google Scholar 

Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

Article  CAS  PubMed  Google Scholar 

DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 53, 3935–3960 (2014).

Article  CAS  PubMed  Google Scholar 

Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

Article  CAS  PubMed  Google Scholar 

Bachmeier, A. & Armstrong, F. Solar-driven proton and carbon dioxide reduction to fuels - lessons from metalloenzymes. Curr. Opin. Chem. Biol. 25, 141–151 (2015).

Article  CAS  PubMed  Google Scholar 

Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

Article  CAS  PubMed  Google Scholar 

Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

Article  CAS  Google Scholar 

Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting. Mechanisms, challenges and design strategies. Chem. Rev. 120, 919–985 (2020).

Article  CAS  PubMed  Google Scholar 

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

Article  PubMed  Google Scholar 

Wei, Y.-S., Zou, L., Wang, H.-F., Wang, Y. & Xu, Q. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications. Adv. Energy Mater 12, 2003970 (2022).

Article  CAS  Google Scholar 

Luo, Y.-H., Dong, L.-Z., Liu, J., Li, S.-L. & Lan, Y.-Q. From molecular metal complex to metal-organic framework: the CO2 reduction photocatalysts with clear and tunable structure. Coordin. Chem. Rev. 390, 86–126 (2019).

Article  CAS  Google Scholar 

Mialane, P. et al. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: from synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 50, 6152–6220 (2021).

Article  CAS  PubMed  Google Scholar 

Majewski, M. B., Peters, A. W., Wasielewski, M. R., Hupp, J. T. & Farha, O. K. Metal-organic frameworks as platform materials for solar fuels catalysis. ACS Energy Lett. 3, 598–611 (2018).

Article  CAS  Google Scholar 

Yoon, J.-W., Kim, J.-H., Kim, C., Jang, H. W. & Lee, J.-H. MOF-based hybrids for solar fuel production. Adv. Energy Mater. 4, 2003052 (2021).

Article  Google Scholar 

Dhakshinamoorthy, A., Li, Z. & Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 47, 8134–8172 (2018).

Article  CAS  PubMed  Google Scholar 

Semrau, A. L. et al. Surface-mounted metal-organic frameworks: past, present and future perspectives. Langmuir 37, 6847–6863 (2021).

Article  CAS  PubMed  Google Scholar 

Castner, A. T., Johnson, B. A., Cohen, S. M. & Ott, S. Mimicking the electron transport chain and active site of FeFe hydrogenases in one metal-organic framework. factors that influence charge transport. J. Am. Chem. Soc. 143, 7991–7999 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1409 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Downes, C. A. & Marinescu, S. C. Electrocatalytic metal-organic frameworks for energy applications. ChemSusChem 10, 4374–4392 (2017).

Article  CAS  PubMed  Google Scholar 

Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

Article  CAS  Google Scholar 

Reuillard, B., Warnan, J., Leung, J. J., Wakerley, D. W. & Reisner, E. A poly(cobaloxime)/carbon nanotube electrode: freestanding buckypaper with polymer-enhanced H2-evolution performance. Angew. Chem. Int. Ed. 55, 3952–3957 (2016).

Article  CAS  Google Scholar 

Hemmer, K., Cokoja, M. & Fischer, R. A. Exploitation of intrinsic confinement effects of MOFs in catalysis. ChemCatChem 13, 1683–1691 (2021).

Article  CAS  Google Scholar 

Ryu, U. J. et al. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Sci. Rep. 7, 612 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Stanley, P. M. et al. Entrapped molecular photocatalyst and photosensitizer in metal-organic framework nanoreactors for enhanced solar CO2 reduction. ACS Catal. 11, 871–882 (2021).

Article  CAS  Google Scholar 

Feng, X. et al. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 142, 690–695 (2020).

Article  CAS  PubMed  Google Scholar 

So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015).

Article  CAS  Google Scholar 

Johnson, B. A., Beiler, A. M., McCarthy, B. D. & Ott, S. Transport phenomena: challenges and opportunities for molecular catalysis in metal-organic frameworks. J. Am. Chem. Soc. 142, 11941–11956 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharp, C. H. et al. Nanoconfinement and mass transport in metal-organic frameworks. Chem. Soc. Rev. 50, 11530–11558 (2021).

Article  CAS  PubMed  Google Scholar 

Johnson, E. M., Ilic, S. & Morris, A. J. Design strategies for enhanced conductivity in metal-organic frameworks. ACS Cent. Sci. 7, 445–453 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

Article  CAS  Google Scholar 

Son, H.-J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

Article  CAS  PubMed  Google Scholar 

Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 54, 6821–6828 (2015).

Article  CAS  PubMed  Google Scholar 

Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif