A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks

Silverstein MS. Interpenetrating polymer networks: so happy together? Polymer. 2020;207:122929. Available from: https://www.sciencedirect.com/science/article/pii/S0032386120307540.

Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Novel dual-responsive semi-interpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res, Part A. 2019;107(10):2327–39.

Article  CAS  Google Scholar 

Raina N, Rani R, Khan A, Nagpal K, Gupta M. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym Bull. 2020;77(9):5027–50.

Article  CAS  Google Scholar 

Pulat M, Kahraman AS, Tan N, Gümüşderelioğlu M. Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing. J Biomater Sci Polym Ed. 2013;24(7):807–19.

Article  CAS  PubMed  Google Scholar 

Huang Y, Zhao X, Zhang Z, Liang Y, Yin Z, Chen B, et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem Mater. 2020;32(15):6595–610.

Article  CAS  Google Scholar 

Yang C, Xue R, Zhang Q, Yang S, Liu P, Chen L, et al. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: an outstanding antibacterial wound dressing. Mater Sci Eng C Mater Biol Appl. 2017;81:303–13.

Article  CAS  PubMed  Google Scholar 

Crosby CO, Stern B, Kalkunte N, Pedahzur S, Ramesh S, Zoldan J. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Rev Chem Eng. 2022;38(3):347–361. Available from: https://doi.org/10.1515/revce-2020-0039 [cited 2022-05-08].

Fares MM, Shirzaei Sani E, Portillo Lara R, Oliveira RB, Khademhosseini A, Annabi N. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci. 2018;6:2938–2950. Available from: http://dx.doi.org/10.1039/C8BM00474A.

Shojarazavi N, Mashayekhan S, Pazooki H, Mohsenifard S, Baniasadi H. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl. 2021;36(5):803–17.

Article  CAS  PubMed  Google Scholar 

Avadhanam V, Ingavle G, Zheng Y, Kumar S, Liu C, Sandeman S. Biomimetic bone-like composites as osteo-odonto-keratoprosthesis skirt substitutes. J Biomater Appl. 2021;35(8):1043–60.

Article  CAS  PubMed  Google Scholar 

Kaity S, Ghosh A. Carboxymethylation of locust bean gum: application in interpenetrating polymer network microspheres for controlled drug delivery. Ind Eng Chem Res. 2013;52(30):10033–45.

Article  CAS  Google Scholar 

Hajikhani M, Khanghahi MM, Shahrousvand M, Mohammadi-Rovshandeh J, Babaei A, Khademi SMH. Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int J Biol Macromol. 2019;139:509–520. Available from: https://www.sciencedirect.com/science/article/pii/S0141813019336542.

Aylsworth J. Best invention ever; US Patent 1111284, 1914.

Aylsworth A, Jiang SX, Desbois A, Hou ST. Characterization of the role of full-length CRMP3 and its calpain-cleaved product in inhibiting microtubule polymerization and neurite outgrowth. Exp Cell Res. 2009;315(16):2856–68.

Article  CAS  PubMed  Google Scholar 

Jana S, Jana S. Interpenetrating polymer network: biomedical applications. Singapore: Springer; 2020.

Book  Google Scholar 

Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014;2014: 583612.

Kosmala JD, Henthorn DB, Brannon-Peppas L. Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials. 2000;21(20):2019–23.

Article  CAS  PubMed  Google Scholar 

Bhattacharya SS, Shukla S, Banerjee S, Chowdhury P, Chakraborty P, Ghosh A. Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym-Plast Technol Eng. 2013;52(8):795–805.

Article  CAS  Google Scholar 

Koul V, Mohamed R, Kuckling D, Adler HJP, Choudhary V. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly (acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf B. 2011;83(2):204–13.

Article  CAS  Google Scholar 

Elbarbary AM, Ghobashy MM. Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by \(\gamma\)-radiation for metal ions removal from aqueous solutions. Carbohydr Polym. 2017;162:16–27. Available from: https://www.sciencedirect.com/science/article/pii/S0144861717300139.

Du M, Lu W, Zhang Y, Mata A, Fang Y. Natural polymer-sourced interpenetrating network hydrogels: fabrication, properties, mechanism and food applications. Trends Food Sci Technol. 2021;116:342–356. Available from: https://www.sciencedirect.com/science/article/pii/S0924224421004763.

Kim AR, Lee SL, Park SN. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol. 2018Oct;118(Pt A):731–40.

Alizadeh N, Barde M, Minkler M, Celestine AD, Agrawal V, Beckingham B, et al. High-fracture-toughness acrylic–polyurethane-based graft-interpenetrating polymer networks for transparent applications. Polym Int. 2021;70(5):636–647. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/pi.6149.

Thomas S, Grande D, Cvelbar U, Raju KVSN, Narayan R, Thomas SP, et al. Micro- and nano-structured interpenetrating polymer networks: from design to applications. Wiley; 2016.

Pramanik S, Dutta J, Chakraborty P. Development of pH-responsive interpenetrating polymer networks of polyacrylamide-g-gum arabica and sodium alginate for gastroprotective delivery of gabapentin. Indian J Pharm Sci. 2021;07(83):473–82.

Google Scholar 

Alokour M, Yilmaz E. A polymer hybrid film based on poly(vinyl cinnamate) and poly(2-hydroxy ethyl methacrylate) for controlled flurbiprofen release. J Polym Res. 2021;28(4):137.

Article  CAS  Google Scholar 

Jana S, Banerjee A, Sen KK, Maiti S. Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics. Mater Sci Eng C Mater Biol Appl. 2016;69:478–85.

Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65(9):1172–1187. Polysaccharide-based systems in drug and gene delivery. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X13000628.

Ghosal K, Adak S, Agatemor C, G P, Kalarikkal N, Thomas S. Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug. J Polym Res. 2020;27(4):98.

Banerjee S, Chaurasia G, Pal D, Ghosh AK, Ghosh A, Kaity S. Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res. 2010;69:777–84.

Swain S, Bal T. Carrageenan-guar gum microwave irradiated micro-porous interpenetrating polymer network: a system for drug delivery. Int J Polym Mater Polym Biomater. 2019;68(5):256–265. Available from: https://doi.org/10.1080/00914037.2018.1443931.

Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomed Nanotechnol Biol Med. 2013;9(2):159–73.

Dror M, Elsabee MZ, Berry GC. Interpenetrating polymer networks for biological applications. Biomater Med Devices Artif Organs. 1979;7(1):31–9.

Article  CAS  PubMed  Google Scholar 

Biswas A, Mondal S, Das SK, Bose A, Thomas S, Ghosal K, et al. Development and characterization of natural product derived macromolecules based interpenetrating polymer network for therapeutic drug targeting. ACS Omega. 2021Nov;6(43):28699–709.

Zou Z, Zhang B, Nie X, Cheng Y, Hu Z, Liao M, et al. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv. 2020;10:39722–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh P, Senthil Kumar S, Keerthi T, Tamizh Mani T, Getyala A. Interpenetrating polymer network (IPN) microparticles an advancement in novel drug delivery system: a review. Pharma Science Monitor. 2011;3:1826–37.

Google Scholar 

Zhu C, Tang N, Gan J, Zhang X, Li Y, Jia X, et al. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (\(\gamma\)-glutamic acid): synthesis, characterization and swelling behavior. Int J Biol Macromol. 2021;185:229–239. Available from: https://www.sciencedirect.com/science/article/pii/S0141813021012411.

Park JC, Hwang YS, Lee JE, Park KD, Matsumura K, Hyon SH, et al. Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation, and collagen synthesis. J Biomed Mater Res. 2000;52(4):669–77.

Zhao J, Zhao X, Guo B, Ma PX. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromol. 2014;15(9):3246–52.

Gachuz EJ, Castillo-Santillán M, Juarez-Moreno K, Maya-Cornejo J, Martinez-Richa A, Andrio A, et al. Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chem. 2020;22:5785–5797.

Hsu HJ, Bugno J, Lee SR, Hong S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology. 2017 Jan;9(1).

Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–78.

Article  CAS  PubMed  Google Scholar 

Mukherji D, Marques CM, Kremer K. Smart responsive polymers: fundamentals and design principles. Annual Review of Condensed Matter Physics. 2020;11:271–99.

Article  CAS  Google Scholar 

Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982:487–492.

Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–70.

Article  CAS  PubMed  Google Scholar 

Ghani M, Heiskanen A, Kajtez J, Rezaei B, Larsen NB, Thomsen P, et al. On-demand reversible UV-triggered interpenetrating polymer network-based drug delivery system using the spiropyran-merocyanine hydrophobicity switch. ACS Appl Mater Interfaces. 2021;13(3):3591–604.

Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3(3):1215–1242. Available from: https://www.mdpi.com/2073-4360/3/3/1215.

Kaity S, Ghosh A. Facile preparation of acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network microspheres for controlled oral drug delivery. J Drug Delivery Sci Technol. 2016;33:1–12.

Article  CAS  Google Scholar 

Smith GN, Brok E, Schmiele M, Mortensen K, Bouwman WG, Duif CP, et al. The microscopic distribution of hydrophilic polymers in interpenetrating polymer networks (IPNs) of medical grade silicone. Polymer. 2021;224:123671. Available from: https://www.sciencedirect.com/science/article/pii/S0032386121002949.

Rehmani S, Ahmad M, Minhas MU, Anwar H, Zangi MIud, Sohail M. Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: optimization and in vitro evaluation studies. Polym Bull. 2017;74(3):737–761.

Agnihotri SA, Aminabhavi TM. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm. 2006;324(2):103–15.

Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM. Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5-fluorouracil. J Microencapsul. 2007;24(3):274–88.

Lee P, Lok CN, Che CM, Kao WJ. A Multifunctional hydrogel delivers gold compound and inhibits human lung cancer xenograft. Pharm Res. 2019;36(4):61.

Wang Y, Li Q, Zhou JE, Tan J, Li M, Xu N, et al. A photopolymerized semi-interpenetrating polymer networks-based hydrogel incorporated with nanoparticle for local chemotherapy of tumors. Pharm Res. 2021Apr;38(4):669–80.

Madhusudana Rao K, Krishna Rao KSV, Ramanjaneyulu G, Ha CS. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int J Pharm. 2015Jan;478(2):788–95.

Jimenez-Rosales A, Flores-Merino MV. A brief review of the pathophysiology of non-melanoma skin cancer and applications of interpenetrating and semi-interpenetrating polymer networks in its treatment. Regenerative Engineering and Translational Medicine. 2018;4(4):187–205.

Article  CAS  Google Scholar 

Thorne JB, Vine GJ, Snowden MJ. Microgel applications and commercial considerations. Colloid Polym Sci. 2011;289(5):625.

Article  CAS  Google Scholar 

Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS, Sairam M, Aminabhavi TM. Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym. 2006;66(3):333–344. Available from: https://www.sciencedirect.com/science/article/pii/S0144861706001561.

Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohyd Polym. 2013;98(1):64–72.

Article  CAS  Google Scholar 

Risbud MV, Hardikar AA, Bhat SV, Bhonde RR. pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release. 2000;68(1):23–30. Available from: https://www.sciencedirect.com/science/article/pii/S016836590000208X.

Agnihotri SA, Aminabhavi TM. Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol. Drug Dev Ind Pharm. 2005;31(6):491–503.

Hosseinzadeh H. Interpenetrating network polymer hydrogels of sodium alginate and poly(acrylic acid) for controlled release of prazosin hydrochloride. Orient J Chem. 2012;03(28):349–52.

Article  Google Scholar 

Ray D, Gils P, Mohanta G, Sahoo P. Comparative delivery of diltiazem hydrochloride through synthesized polymer: hydrogel and hydrogel microspheres. J Appl Polym Sci. 2009;01(116):959–68.

Google Scholar 

Thacharodi D, Panduranga Rao K. Collagen-chitosan composite membranes controlled transdermal delivery of nifedipine and propranolol hydrochloride. Int J Pharm. 1996;134(1):239–241. Available from: https://www.sciencedirect.com/science/article/pii/0378517396044535.

Boppana R, Krishna Mohan G, Nayak U, Mutalik S, Sa B, Kulkarni RV. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. Int J Biol Macromol. 2015;75:133–43.

Rani P, Sen G, Mishra S, Jha U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr Polym. 2012;89(1):275–281. Available from: https://www.sciencedirect.com/science/article/pii/S0144861712002202.

Eswaramma S, Rao KSVK. Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug. Carbohydr Polym. 2017;156:125–134. Available from: https://www.sciencedirect.com/science/article/pii/S0144861716310773.

Sullad AG, Manjeshwar LS, Aminabhavi TM. Novel semi-interpenetrating microspheres of dextran-grafted-acrylamide and poly(vinyl alcohol) for controlled release of abacavir sulfate. Ind Eng Chem Res. 2011;50(21):11778–84.

Krishna Rao KSV, Espenti C, Kummara MR, Eswaramma S, Raju R. Development of gelatin-lignosulfonic acid blend microspheres for controlled release of an anti-malarial drug (pyronaridine). Indian Journal of Advances in Chemical Science. 2015;01(3):25–32.

Google Scholar 

Kulkarni RV, Patel FS, Nanjappaiah HM, Naikawadi AA. In vitro and in vivo evaluation of novel interpenetrated polymer network microparticles containing repaglinide. Int J Biol Macromol. 2014;69:514–22.

Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM. Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym. 2007;69(4):678–687. Available from: https://www.sciencedirect.com/science/article/pii/S0144861707001154.

Prajapati VD, Gandhi AK, Patel KK, Patel BN, Chaudhari AM, Jani GK. Development and optimization of modified release IPN macromolecules of oxcarbazepine using natural polymers. Int J Biol Macromol. 2015;73:160–9.

Yin L, Ding J, Fei L, He M, Cui F, Tang C, et al. Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm. 2008;350(1–2):220–9.

Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): as excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Delivery Sci Technol.. 2020;60.

De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011;16(13–14):569–82.

Look M, Bandyopadhyay A, Blum JS, Fahmy TM. App

留言 (0)

沒有登入
gif