Inhibitory effect of anti-Scg3 on corneal neovascularization: a preliminary study

Moffatt SL, Cartwright VA, Stumpf TH. Centennial review of corneal transplantation. Clin Exp Ophthalmol. 2005;33(6):642–57.

Article  PubMed  Google Scholar 

Shakiba Y, Mansouri K, Arshadi D, Rezaei N. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov. 2009;3(3):221–31.

Article  CAS  PubMed  Google Scholar 

Jin H, He M, Wang W, Liu H, Zhong X, Liu L, Ding H. Comparison of small-incision Femtosecond Laser-assisted Intrastromal Keratoplasty and Lamellar Keratoplasty in Rhesus Monkeys using xenogenic corneal lamellae. Curr Mol Med. 2018;18(6):365–75.

Article  CAS  PubMed  Google Scholar 

Jin H, Liu L, Ding H, He M, Zhang C, Zhong X. Comparison of femtosecond laser-assisted corneal intrastromal xenotransplantation and the allotransplantation in rhesus monkeys. BMC Ophthalmol. 2017;17(1):202.

Article  PubMed  PubMed Central  Google Scholar 

Dohlman TH, Omoto M, Hua J, Stevenson W, Lee SM, Chauhan SK, Dana R. VEGF-trap aflibercept significantly improves long-term graft survival in high-risk corneal transplantation. Transplantation. 2015;99(4):678–86.

Article  CAS  PubMed  Google Scholar 

Dastjerdi MH, Saban DR, Okanobo A, Nallasamy N, Sadrai Z, Chauhan SK, Hajrasouliha AR, Dana R. Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival. Invest Ophthalmol Vis Sci. 2010;51(5):2411–7.

Article  PubMed  PubMed Central  Google Scholar 

Fu YC, Xin ZM. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1alpha. Biosci Rep. 2019;39(1):BSR20180552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zavarshani M, Ahmadi M, Dastmalchi Saei H, Tehrani AA, Dalir Naghadeh B. Comparison therapeutic effects of ciprofloxacin, silver nanoparticles and their combination in the treatment of Pseudomonas keratitis in rabbit: an experimental study. Iran J Pharm Res. 2019;18(1):320–7.

CAS  PubMed  PubMed Central  Google Scholar 

Yiheng D, Hong Z. Research progresses of MicroRNA in Ocular Neovascularization. Med Recapitulate. 2018;24(14):2765–70.

Google Scholar 

Yanbing F, Hao Y, Zhirong X, Mei F, Zengzhi W. Inhibition of VEGF-C antagonist on corneal neovascularization in rats and its effect on graft success. Chin J Mod Drug Application. 2018;12(16):216–8.

Google Scholar 

Enhui Y, wang L, Lili H. Clinical observation of Bevacizumab by ways of subconjunctival injection and eye drops in the treatment of corneal neovascularization. Int J Ophthalmol. 2016;16(12):2302–4.

Google Scholar 

Notara M, Lentzsch A, Clahsen T, Behboudifard S, Braun G, Cursiefen C. Bevacizumab induces upregulation of keratin 3 and VEGFA in Human Limbal epithelial cells in Vitro. J Clin Med. 2019;8(11):1925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guidera AC, Luchs JI, Udell IJ. Keratitis, ulceration, and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology. 2001;108(5):936–44.

Article  CAS  PubMed  Google Scholar 

Yin J, Jacobs DS. Long-term outcome of using prosthetic replacement of ocular surface ecosystem (PROSE) as a drug delivery system for bevacizumab in the treatment of corneal neovascularization. Ocul Surf. 2019;17(1):134–41.

Article  PubMed  Google Scholar 

Yu H, Sun L, Cui J, Li Y, Yan Y, Wei X, Wang C, Song F, Jiang W, Liu Y, et al. Three kinds of corneal host cells contribute differently to corneal neovascularization. EBioMedicine. 2019;44:542–53.

Article  PubMed  PubMed Central  Google Scholar 

Le VNH, Hou Y, Bock F, Cursiefen C. Supplemental Anti Vegf A-Therapy prevents Rebound Neovascularisation after fine needle diathermy treatment to regress pathological corneal (LYMPH)angiogenesis. Sci Rep. 2020;10(1):3908–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong W, Montana M, Santosa SM, Isjwara ID, Huang YH, Han KY, O’Neil C, Wang A, Cortina MS, de la Cruz J, et al. Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Surv Ophthalmol. 2018;63(4):453–79.

Article  PubMed  Google Scholar 

LeBlanc ME, Wang W, Chen X, Caberoy NB, Guo F, Shen C, Ji Y, Tian H, Wang H, Chen R, et al. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med. 2017;214(4):1029–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Webster KA, LeBlanc ME, Tian H. Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cell Mol Life Sci. 2018;75(4):635–47.

Article  CAS  PubMed  Google Scholar 

Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32(6):755–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helle KB, Corti A. Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cell Mol Life Sci. 2015;72(2):339–48.

Article  CAS  PubMed  Google Scholar 

Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc. 2004;79(4):769–94.

Article  PubMed  Google Scholar 

Jin H, Yang B, Jiang D, Zheng L, Ding Z, Lu S. Inhibitory effect of secretogranin III antibody on corneal neovascularization. Rec Adv Ophthalmol. 2022;42(9):680–4.

Google Scholar 

Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355(3):607–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livnat T, Weinberger Y, Budnik I, Deitch I, Dahbash M, Sella R, Dardik R, Kenet G, Nisgav Y, Weinberger D. Activated protein C induces suppression and regression of choroidal neovascularization- A murine model. Exp Eye Res. 2019;186:107695.

Article  CAS  PubMed  Google Scholar 

Lassance L, Marino GK, Medeiros CS, Thangavadivel S, Wilson SE. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury. Exp Eye Res. 2018;170:177–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, et al. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res. 2021;207:108568.

Article  CAS  PubMed  Google Scholar 

Song S, Cheng J, Yu BJ, Zhou L, Xu HF, Yang LL. LRG1 promotes corneal angiogenesis and lymphangiogenesis in a corneal alkali burn mouse model. Int J Ophthalmol. 2020;13(3):365–73.

Article  PubMed  PubMed Central  Google Scholar 

Liu G, Lu P, Chen L, Zhang W, Wang M, Li D, Zhang X. B-cell leukemia/lymphoma 10 promotes angiogenesis in an experimental corneal neovascularization model. Eye (Lond). 2018;32(7):1220–31.

Article  PubMed  Google Scholar 

Lennikov A, Mirabelli P, Mukwaya A, Schaupper M, Thangavelu M, Lachota M, Ali Z, Jensen L, Lagali N. Selective IKK2 inhibitor IMD0354 disrupts NF-kappaB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis. 2018;21(2):267–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf. 2018;16(4):398–414.

Article  PubMed  PubMed Central  Google Scholar 

Eishingdrelo H, Kongsamut S. Minireview: Targeting GPCR activated ERK pathways for drug discovery. Curr Chem Genom Transl Med. 2013;7:9–15.

Article  PubMed  PubMed Central  Google Scholar 

Chang JH, Huang YH, Cunningham CM, Han KY, Chang M, Seiki M, Zhou Z, Azar DT. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol. 2016;61(4):478–97.

Article  PubMed  Google Scholar 

Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011;437(2):169–83.

Article  CAS  PubMed  Google Scholar 

Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S, Karlo JC, Landreth GE, Leone G, Ostrowski MC. Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS ONE. 2009;4(12):e8283.

Article  PubMed  PubMed Central  Google Scholar 

Zhou LB, Zhou YQ, Zhang XY. Blocking VEGF signaling augments interleukin-8 secretion via MEK/ERK/1/2 axis in human retinal pigment epithelial cells. Int J Ophthalmol. 2020;13(7):1039–45.

Article  PubMed  PubMed Central  Google Scholar 

Pedram A, Razandi M, Levin ER. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 1998;273(41):26722–8.

留言 (0)

沒有登入
gif