Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

CAS  PubMed  Google Scholar 

Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

CAS  PubMed  Google Scholar 

Nami, F. et al. Strategies for in vivo genome editing in nondividing cells. Trends Biotechnol. 36, 770–786 (2018).

CAS  PubMed  Google Scholar 

Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Chapman, J. R., Taylor, M. R. G. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

CAS  PubMed  Google Scholar 

Geisinger, J. M. & Stearns, T. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res. 48, 9067–9081 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. Development of a self-restricting CRISPR–Cas9 system to reduce off-target effects. Mol. Ther. Methods Clin. Dev. 18, 390–401 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Kanca, O. et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife 8, e51539 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2021).

PubMed  PubMed Central  Google Scholar 

Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

CAS  PubMed  Google Scholar 

Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvák, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

CAS  PubMed  Google Scholar 

Brown, W. R. A., Lee, N. C. O., Xu, Z. & Smith, M. C. M. Serine recombinases as tools for genome engineering. Methods 53, 372–379 (2011).

CAS  PubMed  Google Scholar 

Calos, M. P. The C31 integrase system for gene therapy. Curr. Gene Ther. 6, 633–645 (2006).

CAS  PubMed  Google Scholar 

Mulholland, C. B. et al. A modular open platform for systematic functional studies under physiological conditions. Nucleic Acids Res. 43, e112 (2015).

PubMed  PubMed Central  Google Scholar 

Ehrhardt, A., Engler, J. A., Xu, H., Cherry, A. M. & Kay, M. A. Molecular analysis of chromosomal rearrangements in mammalian cells after øC31-mediated integration. Hum. Gene Ther. 17, 1077–1094 (2006).

CAS  PubMed  Google Scholar 

Liu, J., Jeppesen, I., Nielsen, K. & Jensen, T. G. Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther. 13, 1188–1190 (2006).

CAS  PubMed  Google Scholar 

Kovač, A. et al. RNA-guided retargeting of Sleeping Beauty transposition in human cells. eLife 9, e53868 (2020).

PubMed  PubMed Central  Google Scholar 

Ma, S. et al. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain. Nucleic Acids Res. 48, 10590–10601 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, S. P. & Wang, H. H. An engineered Cas–transposon system for programmable and site-directed DNA transpositions. CRISPR J. 2, 376–394 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Bhatt, S. & Chalmers, R. Targeted DNA transposition in vitro using a dCas9–transposase fusion protein. Nucleic Acids Res. 47, 8126–8135 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Hew, B. E., Sato, R., Mauro, D., Stoytchev, I. & Owens, J. B. RNA-guided piggyBac transposition in human cells. Synth. Biol. 4, ysz018 (2019).

CAS  Google Scholar 

Chaikind, B., Bessen, J. L., Thompson, D. B., Hu, J. H. & Liu, D. R. A programmable Cas9–serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. 44, 9758–9770 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Akopian, A., He, J., Boocock, M. R. & Stark, W. M. Chimeric recombinases with designed DNA sequence recognition. Proc. Natl Acad. Sci. USA 100, 8688–8691 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Gordley, R. M., Smith, J. D., Gräslund, T. & Barbas, C. F. III Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367, 802–813 (2007).

CAS  PubMed  Google Scholar 

Mercer, A. C., Gaj, T., Fuller, R. P. & Barbas, C. F. III Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 40, 11163–11172 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Gersbach, C. A., Gaj, T., Gordley, R. M., Mercer, A. C. & Barbas, C. F. III Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. 39, 7868–7878 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Prorocic, M. M. et al. Zinc-finger recombinase activities in vitro. Nucleic Acids Res. 39, 9316–9328 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Gordley, R. M., Gersbach, C. A. & Barbas, C. F. III Synthesis of programmable integrases. Proc. Natl Acad. Sci. USA 106, 5053–5058 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Xu, Z. et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. 13, 87 (2013).

PubMed  PubMed Central  Google Scholar 

Kay, M. A., He, C. -Y. & Chen, Z. -Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR–Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).

PubMed  PubMed Central  Google Scholar 

Oscorbin, I. P., Wong, P. F. & Boyarskikh, U. A. The attachment of a DNA‐binding Sso7d‐like protein improves processivity and resistance to inhibitors of M‐MuLV reverse transcriptase. FEBS Lett. 594, 4338–4356 (2020).

Ghosh, P., Kim, A. I. & Hatfull, G. F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell 12, 1101–1111 (2003).

CAS  PubMed  Google Scholar 

Sun, D. et al. A functional genetic toolbox for human tissue-derived organoids. eLife 10, e67886 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Keravala, A. et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol. Genet. Genomics 276, 135–146 (2006).

CAS  PubMed 

留言 (0)

沒有登入
gif