Neuromodulation as a Potential Disease-Modifying Therapy for Osteoarthritis

Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25:815–23.

Article  PubMed  PubMed Central  Google Scholar 

Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA) - molecular basis of disease [Internet]. 2016;1862:576–91. Available from: https://www.sciencedirect.com/science/article/pii/S0925443916000041. Accessed 27 Jul 2022

Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:580–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.

Article  PubMed  PubMed Central  Google Scholar 

Chakrabarti S, Jadon DR, Bulmer DC, Smith ESJ. Human osteoarthritic synovial fluid increases excitability of mouse dorsal root ganglion sensory neurons: an in-vitro translational model to study arthritic pain. Rheumatology (United Kingdom). 2020. https://doi.org/10.1093/rheumatology/kez331

Kwok CHT, Kohro Y, Mousseau M, O’Brien MS, Matyas JR, McDougall JJ, et al. Role of primary afferents in arthritis induced spinal microglial reactivity. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.626884

Li J, Simone DA, Larson AA. Windup leads to characteristics of central sensitization. Pain U S. 1999;79:75–82.

Article  Google Scholar 

Mease PJ, Hanna S, Frakes EP, Altman RD. Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J Rheumatol Canada. 2011;38:1546–51.

Article  CAS  Google Scholar 

Ivanavicius SP, Ball AD, Heapy CG, Westwood RF, Murray F, Read SJ. Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterisation. Pain U S. 2007;128:272–82.

Article  CAS  Google Scholar 

Ohtori S, Orita S, Yamashita M, Ishikawa T, Ito T, Shigemura T, et al. Existence of a neuropathic pain component in patients with osteoarthritis of the knee. Yonsei Med J. 2012;53:801–5.

Article  PubMed  PubMed Central  Google Scholar 

McDougall JJ. Osteoarthritis is a neurological disease – an hypothesis. Osteoarthr Cartil Open [Internet]. 2019;1:100005. Available from: https://www.sciencedirect.com/science/article/pii/S2665913119300056. Accessed 06 Jul 2022

Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD. Autonomic nervous system dysregulation and osteoarthritis pain: mechanisms, measurement, and future outlook. Curr Rheumatol Rep United States. 2022. https://doi.org/10.1007/s11926-022-01071-9

• Berenbaum F, Meng QJ. The brain-joint axis in osteoarthritis: nerves, circadian clocks and beyond. Nat Rev Rheumatol. 2016. This review proposes the brain-joint axis as a physiological axis that becomes dysregulated in osteoarthritis and contributes to the systemic consequences of OA pathogenesis. https://doi.org/10.1038/nrrheum.2016.93

• Courties A, Sellam J, Berenbaum F. Role of the autonomic nervous system in osteoarthritis. Best Pract Res Clin Rheumatol. 2017. This review discusses potential crosstalk mechanisms between the autonomic nervous system and osteoarthritis pathogenesis. https://doi.org/10.1016/j.berh.2018.04.001

Yeater TD, Zubcevic J, Allen KD. Measures of cardiovascular function suggest autonomic nervous system dysregulation after surgical induction of joint injury in the male Lewis rat. Osteoarthr Cartil England. 2022;30:586–95.

Article  CAS  Google Scholar 

Adlan AM, Veldhuijzen van Zanten JJCS, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Cardiovascular autonomic regulation, inflammation and pain in rheumatoid arthritis. Auton Neurosci. 2017;208:137–45.

Article  PubMed  PubMed Central  Google Scholar 

Alen NV, Deer LK, Hostinar CE. Autonomic nervous system activity predicts increasing serum cytokines in children. Psychoneuroendocrinology [Internet]. 2020;119:104745. Available from: https://www.sciencedirect.com/science/article/pii/S0306453020301645. Accessed 08 Jun 2022

Ghia J-E, Blennerhassett P, Collins SM. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J Clin Invest. 2008;118:2209–18.

CAS  PubMed  PubMed Central  Google Scholar 

Abuín-Porras V, Clemente-Suárez VJ, Jaén-Crespo G, Navarro-Flores E, Pareja-Galeano H, Romero-Morales C. Effect of physiotherapy treatment in the autonomic activation and pain perception in male patients with non-specific subacute low back pain. J Clin Med. 2021;10:8. https://doi.org/10.3390/jcm10081793

Fu Q, Levine BD. Exercise and the autonomic nervous system. Handb Clin Neurol Netherlands. 2013;117:147–60.

Article  Google Scholar 

Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med England. 2017;282:64–75.

Zeng C, Li H, Yang T, Deng Z, Yang Y, Zhang Y, et al. Electrical stimulation for pain relief in knee osteoarthritis: systematic review and network meta-analysis. Osteoarthr Cartil England. 2015;23:189–202.

Article  CAS  Google Scholar 

Lee R, Kean WF. Obesity and knee osteoarthritis. Inflammopharmacology. Switzerland; 2012;20:53–8.

Bliddal H, Leeds AR, Christensen R. Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons - a scoping review. Obes Rev. 2014;15:578–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi RC, Vanderlei LCM, Gonçalves ACCR, Vanderlei FM, Bernardo AFB, Yamada KMH, et al. Impact of obesity on autonomic modulation, heart rate and blood pressure in obese young people. Auton Neurosci Netherlands. 2015;193:138–41.

Article  Google Scholar 

Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14.

Article  CAS  PubMed  Google Scholar 

Zhang Y-M, Wang J, Liu X-G. Association between hypertension and risk of knee osteoarthritis: a meta-analysis of observational studies. Medicine [Internet]. Wolters Kluwer Health. 2017;96:e7584–e7584. Available from: https://pubmed.ncbi.nlm.nih.gov/28796041. Accessed 02 Oct 2021

Baker SE, Limberg JK, Dillon GA, Curry TB, Joyner MJ, Nicholson WT. Aging alters the relative contributions of the sympathetic and parasympathetic nervous system to blood pressure control in women. Hypertension. 2018;72:1236–42.

Article  CAS  PubMed  Google Scholar 

Veronese N, Cooper C, Reginster J-Y, Hochberg M, Branco J, Bruyère O, et al. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019;49:9–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carnethon MR, Jacobs DR, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes. Diabetes Care [Internet]. 2003;26:3035 LP – 3041. Available from: http://care.diabetesjournals.org/content/26/11/3035.abstract. Accessed 08 Oct 2021

Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol [Internet]. 2016;12:412–20. Available from: https://doi.org/10.1038/nrrheum.2016.65

Parashar R, Amir M, Pakhare A, Rathi P, Chaudhary L. Age related changes in autonomic functions. J Clin Diagn Res. 2016;10:CC11-5.

CAS  PubMed  PubMed Central  Google Scholar 

Wallace IJ, Bendele AM, Riew G, Frank EH, Hung H-H, Holowka NB, et al. Physical inactivity and knee osteoarthritis in guinea pigs. Osteoarthr Cartil England. 2019;27:1721–8.

Article  CAS  Google Scholar 

Exercise is essential for osteoarthritis: the many benefits of physical activity. Journal of Orthopaedic \& Sports Physical Therapy [Internet]. 2018;48:448. Available from: https://doi.org/10.2519/jospt.2018.0507

Hughson RL, Shoemaker JK. Autonomic responses to exercise: deconditioning/inactivity. Autonomic Neuroscience [Internet]. 2015;188:32–5. Available from: https://www.sciencedirect.com/science/article/pii/S1566070214001672. Accessed 02 Oct 2021

Goldsmith RL, Bloomfield DM, Rosenwinkel ET. Exercise and autonomic function. Coron Artery Dis England. 2000;11:129–35.

Article  CAS  Google Scholar 

Urban H, Little CB. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology [Internet]. 2018;57:iv10–21. Available from: https://doi.org/10.1093/rheumatology/kex399

Maser RE, Lenhard MJ. An overview of the effect of weight loss on cardiovascular autonomic function. Curr Diabetes Rev United Arab Emirates. 2007;3:204–11.

Article  Google Scholar 

Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol United States. 2001;18:415–8.

Article  CAS  Google Scholar 

Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus nerve stimulation in rodent models: an overview of technical considerations. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.00911

Goldring MB. Articular cartilage degradation in osteoarthritis. HSS J. 2012;8:7–9.

Article  PubMed  PubMed Central  Google Scholar 

Li Y-S, Luo W, Zhu S-A, Lei G-H. T Cells in osteoarthritis: alterations and beyond. Front Immunol. 2017;8:356.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis [Internet]. 2018;77:1524 LP – 1534. Available from: http://ard.bmj.com/content/77/10/1524.abstract. Accessed 08 Oct 2021

Saito I, Koshino T, Nakashima K, Uesugi M, Saito T. Increased cellular infiltrate in inflammatory synovia of osteoarthritic knees. Osteoarthr Cartil England. 2002;10:156–62.

Article  CAS  Google Scholar 

Rotenberg S, McGrath JJ. Inter-relation between autonomic and HPA axis activity in children and adolescents. Biol Psychol [Internet]. 2016/02/02. 2016;117:16–25. Available from: https://pubmed.ncbi.nlm.nih.gov/26835595. Accessed 24 May 2022

Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6:603–21.

Article  PubMed  PubMed Central  Google Scholar 

Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018. https://doi.org/10.3389/fnins.2018.00049

Tracey KJ. The inflammatory reflex. Nature. 2002. https://doi.org/10.1038/nature01321

Teh YC, Ding JL, Ng LG, Chong SZ. Capturing the fantastic voyage of monocytes through time and space. Front Immunol [Internet]. 2019;10. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.00834. Accessed 27 Jun 2022

Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/561459

Pickering AE, Boscan P, Paton JFR. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii. J Physiol. 2003. https://doi.org/10.1113/jphysiol.2003.046615

Yeater TD, Clark DJ, Hoyos L, Valdes-Hernandez PA, Peraza JA, Allen KD, et al. Chronic pain is associated with reduced sympathetic nervous system reactivity during simple and complex walking tasks: potential cerebral mechanisms. Chronic Stress [Internet]. SAGE Publications Inc. 2021;5:24705470211030270. Available from: https://doi.org/10.1177/24705470211030273. Accessed 25 Apr 2022

Hohenschurz-Schmidt DJ, Calcagnini G, Dipasquale O, Jackson JB, Medina S, O’Daly O, et al. Linking pain sensation to the autonomic nervous system: the role of the anterior cingulate and periaqueductal gray resting-state networks. Front Neurosci [Internet]. 2020;14. Available from: https://www.frontiersin.org/article/10.3389/fnins.2020.00147. Accessed 02 Jun 2022

Caravaca AS, Gallina AL, Tarnawski L, Tracey KJ, Pavlov VA, Levine YA, et al. An effective method for acute vagus nerve stimulation in experimental inflammation. Front Neurosci. 2019;13:877. https://doi.org/10.3389/fnins.2019.00877

Valdes-Ferrer S, Rosas-Ballina M, Olofsson P, Chavan S, Tracey K. Vagus nerve stimulation produces an anti-inflammatory monocyte phenotype in blood. (138.25). J Immunol. 2010;184(1 Supplement):138.25 LP-138.25. https://doi.org/10.4049/jimmunol.184.Supp.138.25

Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. In: Autonomic Neuroscience: Basic and Clinical. 2000. https://doi.org/10.1016/S1566-0702(00)00233-2

Mion F, Pellissier S, Garros A, Damon H, Roman S, Bonaz B. Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectron Med (Lond). 2020. https://doi.org/10.2217/bem-2020-0004

Marsal S, Corominas H, Lopez Lasanta M, Reina-Sanz D, Perez-Garcia C, Borrell Paños H, et al. Sat0133 pilot clinical study of a non-invasive auricular vagus nerve stimulation device in patients with rheumatoid arthritis. Ann Rheum Dis. 2020. https://doi.org/10.1136/annrheumdis-2020-eular.3315

•• Courties A, Deprouw C, Maheu E, Gibert E, Gottenberg J-E, Champey J, et al. Effect of transcutaneous vagus nerve stimulation in erosive hand osteoarthritis: results from a pilot trial. J Clin Med. 2022;11:4. This study is the first to demonstrate vagus nerve stimulation as an effective treatment strategy for osteoarthritis. https://doi.org/10.3390/jcm11041087

Komegae EN, Farmer DGS, Brooks VL, McKinley MJ, McAllen RM, Martelli D. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway. Brain Behav Immun. 2018. https://doi.org/10.1016/j.bbi.2018.06.005

Grunke M, Schulze-Koops H. Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann Rheum Dis [Internet]. BMJ Group; 2006;65:555–6. Available from: https://pubmed.ncbi.nlm.nih.gov/16531556. Accessed 01 Feb 2021

Chisari E, Yaghmour KM, Khan WS. The effects of TNF-alpha inhibition on cartilage: a systematic review of preclinical studies. Osteoarthritis Cartilage. 2020. https://doi.org/10.1016/j.joca.2019.09.008

Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, et al. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage. 2010. https://doi.org/10.1016/j.joca.2010.08.016

Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009. https://doi.org/10.4049/jimmunol.0802684

Zhao X, Gu M, Xu X, Wen X, Yang G, Li L, et al. CCL3/CCR1 mediates CD14+CD16− circulating monocyte recruitment in knee osteoarthritis progression. Osteoarthritis Cartilage [Internet]. 2020;28:613–25. Available from: https://www.sciencedirect.com/science/article/pii/S1063458420300352. Accessed 28 Jun 2022

Thomson A, Hilkens CMU. Synovial macrophages in osteoarthritis: the key to understanding pathogenesis? Front Immunol. 2021;12:678757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014. https://doi.org/10.1084/jem.20040463

Cremers NAJ, van den Bosch MHJ, van Dalen S, di Ceglie I, Ascone G, van de Loo F, et al. S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther [Internet]. 2017;19:217. Available from: https://doi.org/10.1186/s13075-017-1426-6

Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005. https://doi.org/10.1084/jem.20040463

留言 (0)

沒有登入
gif