Opportunistic Screening Techniques for Analysis of CT Scans

Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62.

Article  PubMed  Google Scholar 

Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, Shepherd JA, Schousboe JT. Clinical use of quantitative computed tomography (qct) of the hip in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part I. J Clin Densitom. 2015;18(3):338–58.

Article  PubMed  Google Scholar 

Genant HK, Wu CY, Van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. JBMR. 1993;8(9):1137–48.

Article  CAS  Google Scholar 

Griffith J, Genant HK. Diagnosis and classification of vertebral fracture. In: Bilezikian JP, et al., editors. Primer on the metabolic bone diseases and disorders of mineral metabolism: ASBMR; 2018. p. 319–30.

Chapter  Google Scholar 

Pickhardt PJ, Lee SJ, Liu J, Yao J, Lay N, Graffy PM, Summers RM. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br J Radiol. 2019;92(1094):20180726.

Article  PubMed  Google Scholar 

Nicolaes J, Raeymaeckers S, Robben D, Wilms G, Vandermeulen D, Libanati C, Debois M. Detection of vertebral fractures in CT using 3D convolutional neural networks. In: International workshop and challenge on computational methods and clinical applications for spine imaging: Springer; 2019.

Google Scholar 

Buerger C, von Berg J, Franz A, Klinder T, Lorenz C, Lenga M. Combining deep learning and model-based segmentation for labeled spine CT segmentation. In: Medical imaging 2020: image processing: SPIE; 2020.

Google Scholar 

Chen H, Shen C, Qin J, Ni D, Shi L, Cheng CY, Heng PA. Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Medical image computing and computer-assisted intervention – MICCAI 201. Munich: Springer; 2015.

Google Scholar 

Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: International conference on medical image computing and computer-assisted intervention: Springer; 2012.

Google Scholar 

Oktay AB, Akgul YS. Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF. IEEE Trans Biomed Eng. 2013;60(9):2375–83.

Article  PubMed  Google Scholar 

Yang D, Xiong T, Xu D, Zhou SK, Xu Z, Chen M, Park J, Grbic S, Tran TD, Chin SP. Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3D CT volumes. In: International conference on medical image computing and computer-assisted intervention: Springer; 2017.

Google Scholar 

Janssens R, Zeng G, Zheng G. Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018): IEEE; 2018.

Google Scholar 

Sekuboyina A, Kukačka J, Kirschke JS, Menze BH, Valentinitsch A. Attention-driven deep learning for pathological spine segmentation. In: International workshop on computational methods and clinical applications in musculoskeletal imaging: Springer; 2017.

Google Scholar 

Cheng P, Yang Y, Yu H, He Y. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net. Sci Rep. 2021;11(1):22156.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loffler MT, Sekuboyina A, Jacob A, Grau AL, Scharr A, El Husseini M, Kallweit M, Zimmer C, Baum T, Kirschke JS. A vertebral segmentation dataset with fracture grading. Radiol Artif Intell. 2020;2(4):e190138.

Article  PubMed  PubMed Central  Google Scholar 

Klein G, Martel A, Sahgal A, Whyne C, Hardisty M. Metastatic vertebrae segmentation for use in a clinical pipeline. In: International workshop and challenge on computational methods and clinical applications for spine imaging: Springer; 2019.

Google Scholar 

Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol. 2020;30(7):4107–16.

Article  PubMed  PubMed Central  Google Scholar 

You X, Gu Y, Liu Y, Lu S, Tang X, Yang J. EG-Trans3DUNet: a single-staged transformer-based model for accurate vertebrae segmentation from spinal CT images. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI): IEEE; 2022.

Google Scholar 

Hempe H, Yilmaz EB, Meyer C, Heinrich MP. Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab. In: Medical Imaging 2022: Image Processing: SPIE; 2022.

Google Scholar 

Burns JE, Yao J, Summers RM. Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology. 2017;284(3):788–97.

Article  PubMed  Google Scholar 

Pisov M, Kondratenko V, Zakharov A, Petraikin A, Gombolevskiy V, Morozov S, Belyaev M. Keypoints localization for joint vertebra detection and fracture severity quantification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention: Springer; 2020.

Google Scholar 

Adela A, Rangarajan L. Computational techniques to segment and classify lumbar compression fractures. Radiol Med. 2020;125(6):551–60.

Article  Google Scholar 

Husseini M, Sekuboyina A, Loeffler M, Navarro F, Menze BH, Kirschke JS. Grading loss: a fracture grade-based metric loss for vertebral fracture detection. In: International conference on medical image computing and computer-assisted intervention: Springer; 2020.

Google Scholar 

Yilmaz EB, Buerger C, Fricke T, Sagar MMR, Peña J, Lorenz C, Glüer C-C, Meyer C. Automated deep learning-based detection of osteoporotic fractures in CT images. In: International workshop on machine learning in medical imaging: Springer; 2021.

Google Scholar 

Chettrit D, Meir T, Lebel H, Orlovsky M, Gordon R, Akselrod-Ballin A, Bar A. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In: International conference on medical image computing and computer-assisted intervention: Springer; 2020.

Google Scholar 

Huang J, Jian F, Wu H, Li H. An improved level set method for vertebra CT image segmentation. Biomed Eng Online. 2013;12:48.

Article  PubMed  PubMed Central  Google Scholar 

Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C. Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal. 2009;13(3):471–82.

Article  PubMed  Google Scholar 

Mastmeyer A, Engelke K, Fuchs C, Kalender WA. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal. 2006;10(4):560–77.

Article  PubMed  Google Scholar 

Rasoulian A, Rohling R, Abolmaesumi P. Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans Med Imaging. 2013;32(10):1890–900.

Article  PubMed  Google Scholar 

Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Loffler MT, Zimmer C, Baum T, Kirschke JS. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019;30(6):1275–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Summers RM, Baecher N, Yao J, Liu J, Pickhardt PJ, Choi JR, Hill S. Feasibility of simultaneous computed tomographic colonography and fully automated bone mineral densitometry in a single examination. J Comput Assist Tomogr. 2011;35(2):212–6.

Article  PubMed  PubMed Central  Google Scholar 

Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noel PB, Lorenz C. Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol. 2014;24(4):872–80.

Article  PubMed  Google Scholar 

Su Q, Zhang Y, Liao S, Yan M, Zhu K, Yan S, Li C, Tan J. 3D computed tomography mapping of thoracolumbar vertebrae fractures. Med Sci Monit. 2019;25:2802–10.

Article  PubMed  PubMed Central  Google Scholar 

Fang J, Franconeri A, Boos J, Nimhuircheartaigh J, Zhang Z, Brook A, Brook OR. Opportunistic bone density measurement on abdomen and pelvis computed tomography to predict fracture risk in women aged 50 to 64 years without osteoporosis risk factors. J Comput Assist Tomogr. 2018;42(5):798–806.

Article  PubMed  Google Scholar 

Ghosh S, Raja'S A, Chaudhary V, Dhillon G. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In: Medical imaging 2011: computer-aided diagnosis: SPIE; 2011.

Google Scholar 

Yao J, Burns JE, Wiese T, Summers RM. Quantitative vertebral compression fracture evaluation using a height compass. In: Medical imaging 2012: computer-aided diagnosis: SPIE; 2012.

Google Scholar 

Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD. Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a Registry-based cohort study of dual x-ray absorptiometry. Radiology. 2019;293(2):405–11.

Article  PubMed  Google Scholar 

Monchka BA, Schousboe JT, Davidson MJ, Kimelman D, Hans D, Raina P, Leslie WD. Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning. Bone. 2022;161:116427.

Article  PubMed  Google Scholar 

Murata K, Endo K, Aihara T, Suzuki H, Sawaji Y, Matsuoka Y, Nishimura H, Takamatsu T, Konishi T, Maekawa A, Yamauchi H, Kanazawa K, Endo H, Tsuji H, Inoue S, Fukushima N, Kikuchi H, Sato H, Yamamoto K. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci Rep. 2020;10(1):20031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao BH, Zhu MSY, Du EZ, Liu WH, Ma JB, Huang H, Gong JS, Diacinti D, Zhang K, Gao B, Liu H, Jiang RF, Ji ZY, Xiong XB, He LC, Wu L, Xu CJ, Du MM, Wang XR, Chen LM, Wu KY, Yang L, Xu MS, Diacinti D, Dou Q, Kwok TYC, Wang YXJ. A software program for automated compressive vertebral fracture detection on elderly women's lateral chest radiograph: Ofeye 1.0. Quant Imaging Med Surg. 2022; 12(8):4259-4271.

Kim YM, Demissie S, Genant HK, Cheng X, Yu W, Samelson EJ, Kiel DP, Bouxsein ML. Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading. Osteoporos Int. 2012;23(3):1007–16.

Article  CAS  PubMed  Google Scholar 

Brown JK, Timm W, Bodeen G, Chason A, Perry M, Vernacchia F, DeJournett R. Asynchronously calibrated quantitative bone densitometry. J Clin Densitom. 2017;30:216–25.

Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening. AJR Am J Roentgenol. 2016;206(4):694–8.

Article  PubMed  Google Scholar 

Pickhardt PJ, Lauder T, Pooler BD, Del Rio AM, Rosas H, Bruce RJ, Binkley N. Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening. Osteoporos Int. 2016;27(1):147–52.

Article  CAS  PubMed  Google Scholar 

Bauer JS, Henning TD, Mueller D, Lu Y, Majumdar S, Link TM. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol. 2007;188(5):1294–301.

Article  PubMed 

留言 (0)

沒有登入
gif