The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease

Zhang Q, Riddle RC, Clemens TL. Bone and the regulation of global energy balance. J Intern Med. 2015;277:681–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oginuma M, Moncuquet P, Xiong F, Karoly E, Chal J, Guevorkian K, et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev Cell. 2017;40:342–353.e10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai X, Lu D, Liu A, Zhang Z, Li X, Zou Z, et al. Reactive oxygen species stimulates receptor activator of NF-κB ligand expression in osteoblast. J Biol Chem. 2005;280:17497–506.

Article  CAS  PubMed  Google Scholar 

Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci. 2019;20:3576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. 3rd ed. San Diego: Academic Press/Elsevier; 2008.

Google Scholar 

Li B, Lee W, Song C, Ye L, Abel ED, Long F. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J. 2020;34:11058–67.

Article  CAS  PubMed  Google Scholar 

Lee J, Kim M, Lee SJ, Kim B, Choi J, Lee SM, et al. PDK2 deficiency prevents ovariectomy-induced bone loss in mice by regulating the RANKL-NFATc1 pathway during osteoclastogenesis. J Bone Miner Res. 2021;36:553–66.

Article  CAS  PubMed  Google Scholar 

Ahn H, Lee K, Kim JM, Kwon SH, Lee SH, Lee SY, et al. Accelerated lactate dehydrogenase activity potentiates osteoclastogenesis via NFATc1 signaling. Kim J-E, editor. PLoS ONE. 2016;11:e0153886.

Article  PubMed  PubMed Central  Google Scholar 

Jung S, Kwon J-O, Kim MK, Song M-K, Kim B, Lee ZH, et al. Mitofusin 2, a mitochondria-ER tethering protein, facilitates osteoclastogenesis by regulating the calcium-calcineurin-NFATc1 axis. Biochem Biophys Res Commun. 2019;516:202–8.

Article  CAS  PubMed  Google Scholar 

Jin Z, Wei W, Yang M, Du Y, Wan Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 2014;20:483–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taubmann J, Krishnacoumar B, Böhm C, Faas M, Müller DIH, Adam S, et al. Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci Rep. 2020;10:21020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellissimo MP, Roberts JL, Jones DP, Liu KH, Taibl KR, Uppal K, et al. Metabolomic associations with serum bone turnover markers. Nutrients. 2020;12:3161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, et al. Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun. 1997;235:646–51.

Article  CAS  PubMed  Google Scholar 

Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, et al. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol. 2016;79:168–80.

Article  CAS  PubMed  Google Scholar 

Boivin G, Anthoine-Terrier C, Obrant KJ. Transmission electron microscopy of bone tissue: a review. Acta Orthop Scand. 1990;61:170–80.

Article  CAS  PubMed  Google Scholar 

Baron R. Polarity and Membrane Transport in Osteoclasts. Connect Tissue Res. 1989;20:109–20.

Article  CAS  PubMed  Google Scholar 

Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol-Cell Physiol. 2000;279:C1220–9.

Article  CAS  PubMed  Google Scholar 

Shum LC, White NS, Mills BN, de Mesy Bentley KL, Eliseev RA. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 2016;25:114–22.

Article  CAS  PubMed  Google Scholar 

Guntur AR, Le PT, Farber CR, Rosen CJ. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 2014;155:1589–95.

Article  PubMed  PubMed Central  Google Scholar 

Schilling K, Brown E, Zhang X. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone. 2022;154:116257. This study highlighted a method for noninvasive imaging of cellular energy metabolism. Further, this research provided additional evidence for the dual contributions of glycolysis and oxidative phosphorylation to meet energy demand in osteoblasts.

Misra BB, Jayapalan S, Richards AK, Helderman RCM, Rendina-Ruedy E. Untargeted metabolomics in primary murine bone marrow stromal cells reveals distinct profile throughout osteoblast differentiation. Metabolomics. 2021;17:86. This study provided metabolite profiles for differentiating osteoblasts using untargeted metabolomics.

Zheng C-X, Sui B-D, Qiu X-Y, Hu C-H, Jin Y. Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends Mol Med. 2020;26:89–104.

Article  CAS  PubMed  Google Scholar 

Shares BH, Busch M, White N, Shum L, Eliseev RA. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J Biol Chem. 2018;293:16019–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riddle RC, Clemens TL. Bone cell bioenergetics and skeletal energy homeostasis. Physiol Rev. 2017;97:667–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee W-C, Ji X, Nissim I, Long F. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 2020;32:108108 This study highlighted the energetic shifts during osteoblast differentiation. Further, this research identified the role of malic enzyme 2 in osteoblast glycolysis.

Ohnishi T, Kusuyama J, Bandow K, Matsuguchi T. Glut1 expression is increased by p53 reduction to switch metabolism to glycolysis during osteoblast differentiation. Biochem J. 2020;477:1795–811.

Article  CAS  PubMed  Google Scholar 

Hu G, Yu Y, Tang YJ, Wu C, Long F, Karner CM. The Amino Acid Sensor Eif2ak4/GCN2 Is Required for Proliferation of Osteoblast Progenitors in Mice. J Bone Miner Res. 2020;35:2004–14.

Article  CAS  PubMed  Google Scholar 

Shen L, Sharma D, Yu Y, Long F, Karner C. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci. 2020:jcs.251645.

Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell. 2015;161:1576–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karner CM, Esen E, Okunade AL, Patterson BW, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551–62.

Article  PubMed  Google Scholar 

Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17:745–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35:1979–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

An JH, Yang J-Y, Ahn BY, Cho SW, Jung JY, Cho HY, et al. Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/2 cells. Bone. 2010;47:140–50.

Article  CAS  PubMed  Google Scholar 

Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol. 2018;14:605–23.

Article  CAS  PubMed  Google Scholar 

Frikha-Benayed D, Basta-Pljakic J, Majeska RJ, Schaffler MB. Regional differences in oxidative metabolism and mitochondrial activity among cortical bone osteocytes. Bone. 2016;90:15–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jande SS. Fine structural study of osteocytes and their surrounding bone matrix with respect to their age in young chicks. J Ultrastruct Res. 1971;37:279–300.

Article  CAS  PubMed  Google Scholar 

Gao J, Qin A, Liu D, Ruan R, Wang Q, Yuan J, et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network. Sci Adv. 2019;5:eaaw7215.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

Article  CAS  PubMed  Google Scholar 

Takeno A, Kanazawa I, Notsu M, Tanaka K, Sugimoto T. Glucose uptake inhibition decreases expressions of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteocalcin in osteocytic MLO-Y4-A2 cells. Am J Physiol-Endocrinol Metab. 2018;314:E115–23.

Article 

留言 (0)

沒有登入
gif