Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion

Adav SS, Cheow ESH, Ravindran A, Dutta B, Sze SK (2012) Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. J Proteomics 75:3694–3706. https://doi.org/10.1016/j.jprot.2012.04.031

Article  CAS  PubMed  Google Scholar 

Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. https://doi.org/10.1039/B918763B

Article  CAS  PubMed  Google Scholar 

Arai H, Yamamoto T, Ohishi T, Shimizu T, Nakata T, Kudo TY (1999) Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145:2813–2820. https://doi.org/10.1099/00221287-145-10-2813

Article  CAS  PubMed  Google Scholar 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VC, de Baura VA, Pedrosa FO, de Souza EM, Dixon R, Monteiro RA (2016) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol 18:2343–2356. https://doi.org/10.1111/1462-2920.12887

Article  CAS  PubMed  Google Scholar 

Barnes MR, Duetz WA, Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179:6145–6153. https://doi.org/10.1128/jb.179.19.6145-6153.1997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behrends V, Jg B, Williams Hd (2011) Differences in strategies to combat osmotic stress in Burkholderia cenocepacia elucidated by NMR-based metabolic profiling. Lett Appl Microbiol 52:619–625. https://doi.org/10.1111/j.1472-765X.2011.03050.x

Article  CAS  PubMed  Google Scholar 

Bennett JP, Bertin L, Moulton B, Fairlamb IJS, Brzozowski AM, Walton NJ, Grogan G (2008) A ternary complex of hydroxycinnamoyl-CoA hydratase–lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Biochem 414:281–289. https://doi.org/10.1042/BJ20080714

Article  CAS  Google Scholar 

Berger T, Poyntner C, Margesin R (2021) Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants. Folia Microbiol 66:87–98. https://doi.org/10.1007/s12223-020-00825-1

Article  CAS  Google Scholar 

Burlingame R, Chapman PJ (1983) Catabolism of phenylpropionic acid and its 3- hydroxyderivative by Escherichia coli. J Bacteriol 155:113–121. https://doi.org/10.1128/jb.155.1.113-121.1983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009

Article  CAS  PubMed  Google Scholar 

Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol 269:465–475. https://doi.org/10.1016/j.biortech.2018.08.065

Article  CAS  PubMed  Google Scholar 

Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. PNAS 103:15280–15287. https://doi.org/10.1073/pnas.0606924103

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. J Bioinform 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  Google Scholar 

Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Env Microbiol 66:2311–2317. https://doi.org/10.1128/AEM.66.6.2311-2317.2000

Article  CAS  Google Scholar 

Dagley S, Chapman PJ, Gibson DT (1965) The metabolism of β-phenylpropionic acid by an Achromobacter. Biochem J 97:643–650. https://doi.org/10.1042/bj0970643

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeAngelis K, Sharma D, Varney R, Simmons B, Isern N, Markillie LM, Nicora C, Norbeck A, Taylor R, Aldrich J, Robinson E (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00280

Article  PubMed  PubMed Central  Google Scholar 

DeShazer D, Brett PJ, Woods DE (1998) The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 30:1081–1100. https://doi.org/10.1046/j.1365-2958.1998.01139

Article  CAS  PubMed  Google Scholar 

Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, González B (2016) Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 83:e01991-e2016. https://doi.org/10.1128/AEM.01991-16

Article  PubMed  PubMed Central  Google Scholar 

Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652

Article  CAS  PubMed  Google Scholar 

Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin: a bacterial gene of the enoyl-SCo-A hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170. https://doi.org/10.1074/jbc.273.7.4163

Article  CAS  PubMed  Google Scholar 

Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. https://doi.org/10.1007/s00253-013-5303-1

Article  CAS  PubMed  Google Scholar 

Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J Biol Chem 275:25069–25077. https://doi.org/10.1074/jbc.274.35.25069

Article  Google Scholar 

Herpell JB, Vanwijnsberghe S, Peeters C, Schindler F, Fragner L, Bejtović M, Weckwerth W, Vandamme P (2021) Paraburkholderia dioscoreae sp. nov., a novel plant associated growth promotor. Int J Syst Evol Microbiol 71:004969. https://doi.org/10.1099/ijsem.0.004969

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by Rhizobia. Appl Environ Microbiol. https://doi.org/10.1128/AEM.05834-11

Article  PubMed  PubMed Central  Google Scholar 

Inkscape Project (2020) Inkscape. Retrieved from https://inkscape.org. Accessed May 2022.

Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141. https://doi.org/10.1007/s00284-005-0400-8

Article  CAS  PubMed  Google Scholar 

Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ Microbiol Rep 9:679–705. https://doi.org/10.1111/1758-2229.12597

Article  CAS  PubMed  Google Scholar 

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaneko M, Ohnishi Y, Horinouchi S (2003) Cinnamate: coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J Bacteriol 185:20–27. https://doi.org/10.1128/JB.185.1.20-27.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, Pardo I, Topuzlu E, Anderson JJ, Austin HP, Dominick G, Johnson CW, Rorrer NA, Szostkiewicz CJ, Copié V, Payne CM, Woodcock HL, Donohoe BS, Beckham GT, McGeehan JE (2020) Characterization and engineering of a two-enzyme system for plastics depolymerization. PNAS 117:25476–25485. https://doi.org/10.1073/pnas.2006753117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovacs-Simon A, Hemsley CM, Scott AE, Prior JL, Titball RW (2019) Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol 19:97. https://doi.org/10.1186/s12866-019-1469-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H, Inui M (2015) Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology 161:254–263. https://doi.org/10.1099/mic.0.083733-0

Article  CAS  PubMed  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

留言 (0)

沒有登入
gif