Design, synthesis, and biological evaluation of 2, 4-dichlorophenoxyacetamide chalcone hybrids as potential c-Met kinase inhibitors

Granito A, Guidetti E, Gramantieri L. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma. J Hepatocell Carcinoma. 2015;2:29–38. https://doi.org/10.2147/JHC.S77038

Article  PubMed  PubMed Central  Google Scholar 

Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94. https://doi.org/10.1007/s10555-007-9107-6

Article  CAS  PubMed  Google Scholar 

Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4:444–7. https://doi.org/10.1097/JTO.0b013e31819d6f91

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45 https://doi.org/10.1186/s12943-018-0796-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghiso E, Giordano S. Targeting MET: why, where and how. Curr Opin Pharm. 2013;13:511–8. https://doi.org/10.1016/j.coph.2013.05.018

Article  CAS  Google Scholar 

Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene. 2021;40:4625–51. https://doi.org/10.1038/s41388-021-01863-w

Article  CAS  PubMed  Google Scholar 

Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem. 2018;143:1103–38. https://doi.org/10.1016/j.ejmech.2017.08.044

Article  CAS  PubMed  Google Scholar 

Ko B, He T, Gadgeel S, Halmos B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med. 2017;5:4. https://doi.org/10.21037/atm.2016.12.09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botting GM, Rastogi I, Chhabra G, Nlend M, Puri N. Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer. PLoS One. 2015;10:e0136155. https://doi.org/10.1371/journal.pone.0136155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantinescu T, Lungu CL. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci. 2021;22:11306 https://doi.org/10.3390/ijms222111306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh HN, Lee MH, Kim E, Yoon G, Chae JI, Shim JH. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine. 2019;63:153014. https://doi.org/10.1016/j.phymed.2019.153014

Article  CAS  PubMed  Google Scholar 

Jung SK, Lee MH, Lim DY, Lee SY, Jeong CH, Kim JE, Lim TG, Chen H, Bode AM, Lee HJ, Lee KW, Dong Z. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth. Mol Carcinog. 2015;54:322–31. https://doi.org/10.1002/mc.22191

Article  CAS  PubMed  Google Scholar 

Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. Phytomedicine. 2019;55:125–36. https://doi.org/10.1016/j.phymed.2018.07.001

Article  CAS  PubMed  Google Scholar 

Oh HN, Lee MH, Kim E, Kwak AW, Yoon G, Cho SS, Liu K, Chae JI, Shim JH. Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules. 2020;10:297. https://doi.org/10.3390/biom10020297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Purnama A, Mardina V, Puspita K, et al. Molecular docking of two cytotoxic compounds from Calotropis gigantea leaves against therapeutic molecular target of pancreatic cancer. Narra J. 2021;1. https://doi.org/10.52225/narraj.v1i2.37

Begum S, Bharathi K, Prasad KVSRG. Mini review on therapeutic profile of phenoxy acids and thier derivatives. Int J Pharm Pharm Sci. 2016;8:66–71. https://doi.org/10.22159/ijpps.2016v8i10.5005

Article  CAS  Google Scholar 

Rani P, Pal D, Hegde RR, Hashim SR. Leuckart synthesis and pharmacological assessment of novel acetamide derivatives. Anticancer Agents Med Chem. 2016;16:898–906. https://doi.org/10.2174/1871520616666151111115327

Article  CAS  PubMed  Google Scholar 

Patil V, Tilekar K, Mehendale-Munj S, Mohan R, Ramaa CS. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem. 2010;45:4539–44. https://doi.org/10.1016/j.ejmech.2010.07.014

Article  CAS  PubMed  Google Scholar 

Bhanushali U, Rajendran S, Sarma K, Kulkarni P, Chatti K, Chatterjee S, Ramaa CS. 5-Benzylidene-2,4-thiazolidenedione derivatives: design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg Chem. 2016;67:139–47. https://doi.org/10.1016/j.bioorg.2016.06.006

Article  CAS  PubMed  Google Scholar 

Prabhakar BT, Khanum SA, Shashikanth S, Salimath BP. Antiangiogenic effect of 2-benzoyl-phenoxy acetamide in EAT cell is mediated by HIF-1 alpha and down regulation of VEGF of in-vivo. Investig N Drugs. 2006;24:471–78. https://doi.org/10.1007/s10637-006-6587-0

Article  CAS  Google Scholar 

Wang C, Gao H, Dong J, Wang F, Li P, Zhang J. Insight into the medicinal chemistry of EGFR and HER-2 inhibitors. Curr Med Chem. 2014;21:1336–50. https://doi.org/10.2174/0929867320666131119124646

Article  CAS  PubMed  Google Scholar 

Lee K, Roh SH, Xia Y, Kang KW. Synthesis and biological evaluation of phenoxy-N-phenylacetamide derivatives as novel P-glycoprotein inhibitors. Bull Korean Chem Soc. 2011;32:3666–74. https://doi.org/10.5012/bkcs.2011.32.10.3666

Article  CAS  Google Scholar 

Jung SK, Lee MH, Lim DY, Lee SY, Jeong CH, Kim JE, Lim TG, Chen H, Bode AM, Lee HJ, Lee KW. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib‐resistant lung cancer growth. Mol Carcinog. 2015;54:322–31. https://doi.org/10.1002/mc.22191

Article  CAS  PubMed  Google Scholar 

Joshi A, Bhojwani H, Wagal O, Begwani K, Joshi U, Sathaye S, Kanchan D. Evaluation of benzamide-chalcone derivatives as EGFR/CDK2 inhibitor: synthesis, in-vitro inhibition, and molecular modeling studies. Anticancer Agents Med Chem. 2022;22:328–43. https://doi.org/10.2174/1871520621666210415091359

Article  CAS  PubMed  Google Scholar 

Karthikeyan C, Narayana Moorthy NSH, Ramasamy S, Vanam U, Manivannan E, Karunagaran D, Trivedi P. Advances in chalcones with anticancer activities. Recent Pat Anticancer Drug Discov 2014;10:97–115

Article  Google Scholar 

Silverstein RM, Webster FX. Spectrometric identification of organic compounds, 6th ed. 2006

Parr C, Jiang WG. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol. 2001;19:857–63. https://doi.org/10.3892/ijo.19.4.857

Article  CAS  PubMed  Google Scholar 

Wang J, Anderson MG, Oleksijew A, Vaidya KS, Boghaert ER, Tucker L, Zhang Q, Han EK, Palma JP, Naumovski L, Reilly EB. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23:992–1000. https://doi.org/10.1158/1078-0432.CCR-16-1568

Article  CAS  PubMed  Google Scholar 

Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, Paty PB, Weiser MR. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2007;248:219–28. https://doi.org/10.1016/j.canlet.2006.07.007

Article  CAS  PubMed  Google Scholar 

Liu Y, Shi QF, Qi M, Tashiro S, Onodera S, Ikejima T. Interruption of hepatocyte growth factor signaling augmented oridonin-induced death in human non-small cell lung cancer A549 cells via c-met-nuclear factor-κB-cyclooxygenase-2 and c-Met-Bcl-2-caspase-3 pathways. Biol Pharm Bull. 2012;35:1150–58. https://doi.org/10.1248/bpb.b12-00197

Article  CAS  PubMed  Google Scholar 

Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, Richards W, Sugarbaker D, Husain AN, Christensen JG, Salgia R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–88. https://doi.org/10.1158/0008-5472.CAN-04-2650

Article  CAS  PubMed  Google Scholar 

Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, Day ML. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol. 1995;147:386–96.

CAS  PubMed  PubMed Central  Google Scholar 

Wu JF, Liu MM, Huang SX, Wang Y. Design and synthesis of novel substituted naphthyridines as potential c-Met kinase inhibitors based on MK-2461. Bioorg Med Chem Lett. 2015;25:3251–55. https://doi.org/10.1016/j.bmcl.2015.05.082

Article  CAS  PubMed  Google Scholar 

Yang Y, Zhang Y, Yang L, Zhao L, Si L, Zhang H, Liu Q, Zhou J. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity. Bioorg Chem. 2017;70:126–32. https://doi.org/10.1016/j.bioorg.2016.12.002

Article  CAS  PubMed  Google Scholar 

Zhai X, Bao G, Wang L, Cheng M, Zhao M, Zhao S, Zhou H, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors. Bioorg Med Chem. 2016;24:1331–45. https://doi.org/10.1016/j.bmc.2016.02.003

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif