Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling

French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3

Article  CAS  Google Scholar 

Ansari F, Sjöstedt A, Larsson PT, Berglund LA, Wågberg L (2015) Hierarchical wood cellulose fiber/epoxy biocomposites – materials design of fiber porosity and nanostructure. Compos Part A: Appl Sci Manufac 74:60–68. https://doi.org/10.1016/j.compositesa.2015.03.024

Article  CAS  Google Scholar 

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

Article  CAS  PubMed  Google Scholar 

Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, Havakhah S, Nekooei S, Jafarian AH, Rezaie F, Peivandi MT, Mesgarani H, Behravan J (2019) Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci: Mater Med 30:33. https://doi.org/10.1007/s10856-019-6235-9

Article  CAS  PubMed  Google Scholar 

Zhang W, Wang XC, Li XY, Zhang LL, Jiang F (2020) A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydr Polym 236:116043. https://doi.org/10.1016/j.carbpol.2020.116043

Article  CAS  PubMed  Google Scholar 

Salimi S, Sotudeh-Gharebagh R, Zarghami R, Chan SY, Yuen KH (2019) Production of nanocellulose and its applications in drug delivery: a critical review. ACS Sustain Chem Eng 7:15800–15827. https://doi.org/10.1021/acssuschemeng.9b02744

Article  CAS  Google Scholar 

Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/C7CS00790F

Article  CAS  PubMed  Google Scholar 

Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater 33:e2000619. https://doi.org/10.1002/adma.202000619

Article  CAS  PubMed  Google Scholar 

Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446. https://doi.org/10.1021/acs.chemmater.7b01170

Article  CAS  Google Scholar 

Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31:e1801651. https://doi.org/10.1002/adma.201801651

Article  CAS  PubMed  Google Scholar 

Henriksen K, Karsdal MA (2016) Type I collagen. Biochem Collagen. https://doi.org/10.1016/b978-0-12-809847-9.00001-5

Article  Google Scholar 

Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482–487

Article  CAS  PubMed  Google Scholar 

Ge L, Xu Y, Li X, Yuan L, Tan H, Li D, Mu C (2018) Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustain Chem Eng 6:9153–9166. https://doi.org/10.1021/acssuschemeng.8b01482

Article  CAS  Google Scholar 

Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760. https://doi.org/10.1016/j.carbpol.2012.11.029

Article  CAS  PubMed  Google Scholar 

Noh YK, Dos Santos Da Costa A, Park YS, Du P, Kim IH, Park K (2019) Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym 219:210–218. https://doi.org/10.1016/j.carbpol.2019.05.039

Article  CAS  PubMed  Google Scholar 

Lee JS, Ryu YS, Kim IS, Kim SH (2019) Effect of interface affinity on the performance of a composite of microcrystalline cellulose and polypropylene/polylactide blends. Polym Int 68:1402–1410. https://doi.org/10.1002/pi.5831

Article  CAS  Google Scholar 

Nakatani H, Iwakura K, Hamadate M, Okazaki N, Aoyama M, Terano M (2011) Interface adhesion properties of syndiotactic polypropylene/cellulose group composite: relationship between chemical structure of coupling agent and reactivity for cellulose group. J Appl Polym Sci 122:2798–2806. https://doi.org/10.1002/app.34325

Article  CAS  Google Scholar 

Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

Article  CAS  PubMed  Google Scholar 

Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of trichoderma reesei cellobiohydrolase I. Proteins 14:475–482

Article  CAS  PubMed  Google Scholar 

Markus L, Maija-Liisa M, Maarit K, Gunnar L, Jerry S, Torbjorn D, Tapani R, Goran P, Arto A (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4:1056–1064

Article  Google Scholar 

Lehtio J, Sugiyamat J, Gustavsson M, Fransson L, Linder M, Teeri uT (2016) The binding specificity and affinity determinants of family 1 and family 3 cellulose b inding modules. Proc Natl Acad Sci USA 100:484–489

Article  Google Scholar 

Griffo A, Rooijakkers BJM, Hahl H, Jacobs K, Linder MB, Laaksonen P (2019) Binding forces of cellulose binding modules on cellulosic nanomaterials. Biomacromolecules 20:769–777. https://doi.org/10.1021/acs.biomac.8b01346

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chundawat SPS, Nemmaru B, Hackl M, Brady SK, Hilton MA, Johnson MM, Chang S, Lang MJ, Huh H, Lee SH, Yarbrough JM, Lopez CA, Gnanakaran S (2021) Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III. J Biol Chem 296:100431. https://doi.org/10.1016/j.jbc.2021.100431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Ding C, Yang J, Lin S, Chen L, Huang L (2016) Study of interaction between water-soluble collagen and carboxymethyl cellulose in neutral aqueous solution. Carbohydr Polym 137:410–417. https://doi.org/10.1016/j.carbpol.2015.10.098

Article  CAS  PubMed  Google Scholar 

Liu D, Dong X, Han B, Huang H, Qi M (2020) Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism. Compos Commun 21:100374. https://doi.org/10.1016/j.coco.2020.100374

Article  Google Scholar 

Fernandes A, Thomas L, Altaner C, Callow P, Forsyth V, Apperley D, Kennedy C, Jarvis M (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:e1195–e1203

Article  PubMed  PubMed Central  Google Scholar 

Vermaas JV, Crowley MF, Beckham GT (2019) A quantitative molecular atlas for interactions between lignin and cellulose. ACS Sustain Chem Eng 7:19570–19583. https://doi.org/10.1021/acssuschemeng.9b04648

Article  CAS  Google Scholar 

Malaspina DC, Faraudo J (2019) Molecular insight into the wetting behavior and amphiphilic character of cellulose nanocrystals. Adv Colloid Interface Sci 267:15–25. https://doi.org/10.1016/j.cis.2019.02.003

Article  CAS  PubMed  Google Scholar 

Cevanti TA, Sari NSP, Isnaini SI, Rois MF, Setyawan H, Soetojo A, Widjiastuti I (2021) Cellulose fiber from coconut coir for development of dental composite filler. J Int Dent Med Res 14:1401–1406

Google Scholar 

Chen P, Berglund RGL, Wohlert LA J (2020) Surface modification effects on nanocellulose – molecular dynamics simulations using umbrella sampling and computational alchemy. J Mater Chem A 8(44):23617–23627. https://doi.org/10.1039/d0ta09105g

Article  CAS  Google Scholar 

Ren Z, Guo R, Bi H, Jia X, Xu M, Cai L (2019) Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study. ACS Appl Mater Interfaces 12(2):3236–3244. https://doi.org/10.1021/acsami.9b20101

Article  CAS  Google Scholar 

Gomes TCF, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346. https://doi.org/10.1002/jcc.22959

Article  CAS  PubMed  Google Scholar 

Berisio R, Vitagliano L, Mazzarella L, Zagari A (2009) Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3. Protein Sci 11:262–270. https://doi.org/10.1110/ps.32602

Article  CAS  Google Scholar 

Pradhan SM, Katti DR, Katti KS (2011) Steered molecular dynamics study of mechanical response of full length and short collagen molecules. J Nanomechanics Micromechanics 1(3):104–110. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000035

Article  Google Scholar 

Cutini M, Bocus M, Ugliengo P (2019) Decoding collagen triple helix stability by means of hybrid DFT simulations. J Phys Chem B 123(34):7354–7364. https://doi.org/10.1021/acs.jpcb.9b05222

Article  CAS  PubMed  Google Scholar 

Ruiz-Rodriguez L, Loche P, Hansen LT, Netz RR, Fratzl P, Schneck E, Bertinetti L (2021) Sequence-specific response of collagen-mimetic peptides to osmotic pressure. MRS Bull 46(10):889–901. https://doi.org/10.1557/s43577-021-00138-9

Article  CAS  Google Scholar 

Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

Article  CAS  Google Scholar 

Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

Article 

留言 (0)

沒有登入
gif