A novel VOC breath tracer method to evaluate indoor respiratory exposures in the near- and far-fields; implications for the spread of respiratory viruses

Coleman KK, Tay DJW, Sen Tan K, Ong SWX, Son TT, Koh MH, et al. Viral load of SARS-CoV-2 in respiratory aerosols emitted by COVID-19 patients while breathing, talking, and singing. Clin Infect Dis. 2021; Available from: https://doi.org/10.1093/cid/ciab691.

Adenaiye OO, Lai J, de Mesquita PJB, Hong F, Youssefi S, German J, et al. Infectious SARS-CoV-2 in exhaled aerosols and efficacy of masks during early mild infection. Clin Infect Dis. 2021 [cited 2021 Nov 24]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab797/6370149.

Parhizkar H, Dietz L, Olsen-Martinez A, Horve PF, Barnatan L, Northcutt D, et al. Quantifying environmental mitigation of aerosol viral load in a controlled chamber with participants diagnosed with COVID-19. Clin Infect Dis. 2022 [cited 2022 Jan 17]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciac006/6498295.

Horve P, Dietz L, Bowles G, MacCrone G, Olsen-Martinez A, Northcutt D, et al. Longitudinal analysis of built environment and aerosol contamination associated with isolated COVID-19 positive individuals. 2021. Available from: https://assets.researchsquare.com/files/rs-861942/v1_covered.pdf?c=1630438371.

Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission of respiratory viruses. Science 2021;373:eabd9149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lednicky JA, Lauzardo M, Fan ZH, Jutla A, Tilly TB, Gangwar M, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis. 2020;100:476–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lednicky JA, Lauzardo M, Alam MM, Elbadry MA, Stephenson CJ, Gibson JC, et al. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int J Infect Dis. 2021; Available from: https://doi.org/10.1016/j.ijid.2021.04.063.

Parhizkar H, Van Den Wymelenberg KG, Haas CN, Corsi RL A quantitative risk estimation platform for indoor aerosol transmission of COVID‐19. Risk Anal. 2021; Available from: https://doi.org/10.1111/risa.13844.

Li Y, Cheng P, Jia W Poor ventilation worsens short‐range airborne transmission of respiratory infection. Indoor Air. 2021; Available from: https://doi.org/10.1111/ina.12946.

Morawska L, Milton DK. It is time to address airborne transmission of Coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020;71:2311–3.

CAS  PubMed  Google Scholar 

Nazaroff WW, Gadgil AJ, Weschler CJ Modeling of indoor air quality and exposure. ASTM International; 1993.

National Research Council (US) Committee on Indoor Pollutants. Monitoring and modeling of indoor air pollution. Washington, D.C., DC: National Academies Press; 1981.

Mahyuddin N, Awbi H. The spatial distribution of carbon dioxide in an environmental test chamber. Build Environ. 2010;45:1993–2001.

Article  Google Scholar 

Bhagat RK, Davies Wykes MS, Dalziel SB, Linden PF. Effects of ventilation on the indoor spread of COVID-19. J Fluid Mech. 2020;903:F1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen G, Ainiwaer S, Zhu Y, Zheng S, Hou W, Shen H, et al. Quantifying source contributions for indoor CO2 and gas pollutants based on the highly resolved sensor data. Environ Pollut. 2020;267:115493.

Article  CAS  PubMed  Google Scholar 

Qiu Y, Tao S, Yun X, Du W, Shen G, Lu C, et al. Indoor PM2.5 profiling with a novel side-scatter indoor lidar. Environ Sci Technol Lett. 2019;6:612–6.

Article  CAS  Google Scholar 

Sagona JA, Shalat SL, Wang Z, Ramagopal M, Black K, Hernandez M, et al. Evaluation of particle resuspension in young children’s breathing zone using stationary and robotic (PIPER) aerosol samplers. J Aerosol Sci. 2015;85:30–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Micallef A, Caldwell J, Colls JJ. The influence of human activity on the vertical distribution of airborne particle concentration in confined environments: Preliminary results. Indoor Air. 1998;8:131–6.

Article  Google Scholar 

Lakey PSJ, Won Y, Shaw D, Østerstrøm FF, Mattila J, Reidy E, et al. Spatial and temporal scales of variability for indoor air constituents. Commun Chem. 2021;4:1–7.

Article  Google Scholar 

Gall ET, Laguerre A, Noelck M, Van Meurs A, Austin JP, Foster BA. Near-field airborne particle concentrations in young children undergoing high-flow nasal cannula therapy: a pilot study. J Hosp Infect. 2021;113:14–21.

Article  CAS  PubMed  Google Scholar 

The American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Position Document on Indoor Carbon Dioxide. https://www.ashrae.org/. [cited 2022 May 13]. Available from: https://www.ashrae.org/file.

Rudnick SN, Milton DK. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 2003;13:237–45.

Article  CAS  PubMed  Google Scholar 

Riley EC, Murphy G, Riley RL. Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978;107:421–32.

Article  CAS  PubMed  Google Scholar 

Haahr A-M, Bardow A, Thomsen CE, Jensen SB, Nauntofte B, Bakke M, et al. Release of peppermint flavour compounds from chewing gum: effect of oral functions. Physiol Behav. 2004;82:531–40.

Article  CAS  PubMed  Google Scholar 

Ampollini L, Katz EF, Bourne S, Tian Y, Novoselac A, Goldstein AH, et al. Observations and contributions of real-time indoor ammonia concentrations during HOMEChem. Environ Sci Technol. 2019;53:8591–8.

Article  CAS  PubMed  Google Scholar 

Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion- Process. 1998;173:191–241.

Article  CAS  Google Scholar 

de Gouw JA, Goldan PD, Warneke C, Kuster WC, Roberts JM, Marchewka M, et al. Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res. 2003;108. Available from: https://doi.org/10.1029/2003jd003863.

Jordan C, Fitz E, Hagan T, Sive B, Frinak E, Haase K, et al. Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences. Atmos Chem Phys. 2009;9:4677–97.

Article  CAS  Google Scholar 

Malásková M, Henderson B, Chellayah PD, Ruzsanyi V, Mochalski P, Cristescu SM, et al. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res. 2019;13:046009.

Article  PubMed  Google Scholar 

Henderson B, Slingers G, Pedrotti M, Pugliese G, Malásková M, Bryant L, et al. The peppermint breath test benchmark for PTR-MS and SIFT-MS. J Breath Res. 2021;15:046005.

Article  CAS  Google Scholar 

Tani A, Hayward S, Hewitt CN. Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom. 2003;223–224:561–78.

Article  Google Scholar 

Materić D, Lanza M, Sulzer P, Herbig J, Bruhn D, Turner C, et al. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC. Anal Bioanal Chem. 2015;407:7757–63.

Article  PubMed  Google Scholar 

Guideline 2-2005 ¿ Engineering Analysis of experimental data. [cited 2021 Nov 24]. Available from: https://www.techstreet.com/ashrae/standards/guideline-2-2005-engineering-analysis-of-experimental-data?gateway_code=ashrae&product_id=1644049.

Carlo M Package “propagate”. 2018 [cited 2022 Jan 18]. Available from: https://cran.r-project.org/web/packages/propagate/propagate.pdf.

Lachenbruch PA, Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.). J Am Stat Assoc. 1989;84:1096.

Article  Google Scholar 

CohensD function - RDocumentation. [cited 2022 Jan 18]. Available from: https://www.rdocumentation.org/packages/lsr/versions/0.5.2/topics/cohensD.

Fenske JD, Paulson SE. Human breath emissions of VOCs. J Air Waste Manag Assoc. 1999;49:594–8.

Article  CAS  PubMed  Google Scholar 

Wang N, Ernle L, Bekö G, Wargocki P, Williams J. Emission rates of volatile organic compounds from humans. Environ Sci Technol. 2022;56:4838–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunne E, Galbally IE, Cheng M, Selleck P, Molloy SB, Lawson SJ. Comparison of VOC measurements made by PTR-MS, adsorbent tubes–GC-FID-MS and DNPH derivatization–HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements. Atmos Meas Tech. 2018;11:141–59.

Article  CAS  Google Scholar 

Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1:98–101.

Article  Google Scholar 

留言 (0)

沒有登入
gif