A simple transwell-based infection system for obtaining pure populations of VZV-infected cells

Elsevier

Available online 25 November 2022, 114661

Journal of Virological MethodsAuthor links open overlay panelHIGHLIGHTS•

In vitro Varicella-Zoster virus (VZV) infections usually involve co-culture setups

To separate inoculum and target cells, a transwell-based assay was developed

VZV infects target cells through transwell membranes

Harvested target cells are free of inoculum cells

Infection rates in the transwell assay are comparable to the co-culture setup

ABSTRACT

Varicella-Zoster virus (VZV) is a human herpesvirus and causes chickenpox and shingles. Research into its molecular virology has been hampered by a lack of methods for generation of high-titre, cell-free infectious virus preparations. VZV propagation and infection in vitro is therefore commonly achieved by co-culture of uninfected ‘target’ cells with infected ‘inoculum’ cells. A major drawback of this approach is that it results in mixed cell populations after infection. To overcome this limitation we developed a transwell-based VZV infection system. Infected inoculum cells and uninfected target cells are spatially separated by a transwell membrane. While cell-cell contact and VZV spread can occur through membrane pores, the two cell populations do not mix. This simple protocol requires no special instrumentation or reagents. We successfully used this system for infection of a range of target cells and obtained pure populations for downstream analyses such as flow cytometry and RT-qPCR. In sum, we developed a broadly applicable approach to study the molecular and cellular biology as well as host-pathogen interactions of VZV.

KEYWORDS

Varicella-Zoster virus

Chickenpox

Shingles

Co-Culture

Transwell, Interferon

View full text

© 2022 Published by Elsevier B.V.

留言 (0)

沒有登入
gif