International Consensus Classification of acute lymphoblastic leukemia/lymphoma

Arber DA, Hasserjian RP, Orazi A et al (2022) Classification of myeloid neoplasms/acute leukemia: global perspectives and the international consensus classification approach. Am J Hematol 97:514–518. https://doi.org/10.1002/ajh.26503

Article  PubMed  PubMed Central  Google Scholar 

Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

Article  CAS  PubMed  Google Scholar 

Gu Z, Churchman ML, Roberts KG et al (2019) PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 51:296–307. https://doi.org/10.1038/s41588-018-0315-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Hu S, Wang SA et al (2020) Chronic myeloid leukemia presenting in lymphoblastic crisis, a differential diagnosis with Philadelphia-positive B-lymphoblastic leukemia. Leuk Lymphoma 61:2831–2838. https://doi.org/10.1080/10428194.2020.1795160

Article  CAS  PubMed  Google Scholar 

Hovorkova L, Zaliova M, Venn NC et al (2017) Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood 129:2771–2781. https://doi.org/10.1182/blood-2016-11-749978

Article  CAS  PubMed  Google Scholar 

Biondi A, Gandemer V, De Lorenzo P et al (2018) Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol 5:e641–e652. https://doi.org/10.1016/S2352-3026(18)30173-X

Article  PubMed  Google Scholar 

Ware AD, Wake L, Brown P et al (2019) B-Lymphoid blast phase of chronic myeloid leukemia: a case report and review of the literature. AJSP Rev Rep 24:191–195

PubMed  PubMed Central  Google Scholar 

Schultz KR, Carroll A, Heerema NA et al (2014) Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 28:1467–1471. https://doi.org/10.1038/leu.2014.30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cazzaniga G, De Lorenzo P, Alten J et al (2018) Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica 103:107–115. https://doi.org/10.3324/haematol.2017.176917

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanasi I, Ba I, Sirvent N et al (2019) Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 134:1351–1355. https://doi.org/10.1182/blood.2019001244

Article  PubMed  Google Scholar 

Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357. https://doi.org/10.1038/nrclinonc.2015.38

Article  CAS  PubMed  Google Scholar 

Swerdlow SH, Campo E, Harris NL et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edn. International Agency for Research on Cancer, Lyon, p. 75

Roberts KG, Li Y, Payne-Turner D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371:1005–1015. https://doi.org/10.1056/NEJMoa1403088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reshmi SC, Harvey RC, Roberts KG et al (2017) Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood 129:3352–3361. https://doi.org/10.1182/blood-2016-12-758979

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maese L, Raetz EA (2019) Can Ph-like ALL be effectively targeted? Best Pract Res Clin Haematol 32:101096. https://doi.org/10.1016/j.beha.2019.101096

Article  PubMed  Google Scholar 

Roberts KG, Mullighan CG (2020) The biology of B-progenitor acute lymphoblastic leukemia. Cold Spring Harb Perspect Med 10:a034835. https://doi.org/10.1101/cshperspect.a034835

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts KG, Janke LJ, Zhao Y et al (2018) ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood 132:861–865. https://doi.org/10.1182/blood-2018-05-849554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swerdlow SH, International Agency for Research on Cancer (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4 edn. Internat. Agency for Research on Cancer, Lyon

Holmfeldt L, Wei L, Diaz-Flores E et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45:242–252. https://doi.org/10.1038/ng.2532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J-F, Dai Y-T, Lilljebjörn H et al (2018) Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A 115:E11711–E11720. https://doi.org/10.1073/pnas.1814397115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, McCastlain K, Yoshihara H et al (2016) Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 48:1481–1489. https://doi.org/10.1038/ng.3691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A et al (2016) Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 7:11790. https://doi.org/10.1038/ncomms11790

Article  PubMed  PubMed Central  Google Scholar 

Yasuda T, Tsuzuki S, Kawazu M et al (2016) Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet 48:569–574. https://doi.org/10.1038/ng.3535

Article  CAS  PubMed  Google Scholar 

Siegele BJ, Stemmer-Rachamimov AO, Lilljebjorn H et al (2022) N-terminus DUX4-immunohistochemistry is a reliable methodology for the diagnosis of DUX4-fused B-lymphoblastic leukemia/lymphoma (N-terminus DUX4 IHC for DUX4-fused B-ALL). Genes Chromosomes Cancer 61:449–458. https://doi.org/10.1002/gcc.23033

Article  CAS  PubMed  Google Scholar 

Schinnerl D, Mejstrikova E, Schumich A et al (2019) CD371 cell surface expression: a unique feature of DUX4-rearranged acute lymphoblastic leukemia. Haematologica 104:e352–e355. https://doi.org/10.3324/haematol.2018.214353

Article  CAS  PubMed  Google Scholar 

Hirabayashi S, Butler ER, Ohki K et al (2021) Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia 35:3272–3277. https://doi.org/10.1038/s41375-021-01199-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shago M, Abla O, Hitzler J et al (2016) Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer 63:1915–1921. https://doi.org/10.1002/pbc.26116

Article  CAS  PubMed  Google Scholar 

Alexander TB, Gu Z, Iacobucci I et al (2018) The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562:373–379. https://doi.org/10.1038/s41586-018-0436-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGinnis E, Yang D, Au N et al (2021) Clinical and laboratory features associated with myeloperoxidase expression in pediatric B-lymphoblastic leukemia. Cytometry B Clin Cytom 100:446–453. https://doi.org/10.1002/cyto.b.21966

Article  CAS  PubMed  Google Scholar 

Hirabayashi S, Ohki K, Nakabayashi K et al (2017) ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102:118–129. https://doi.org/10.3324/haematol.2016.151035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janet NB, Kulkarni U, Arun AK et al (2021) Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia. Int J Lab Hematol 43:658–663. https://doi.org/10.1111/ijlh.13580

Article  PubMed  PubMed Central  Google Scholar 

Zaliova M, Winkowska L, Stuchly J et al (2021) A novel class of ZNF384 aberrations in acute leukemia. Blood Adv 5:4393–4397. https://doi.org/10.1182/bloodadvances.2021005318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Z, Churchman M, Roberts K et al (2016) Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun 7:13331. https://doi.org/10.1038/ncomms13331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohki K, Kiyokawa N, Saito Y et al (2019) Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica 104:128–137. https://doi.org/10.3324/haematol.2017.186320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Hu S, Konopleva M et al (2015) De Novo MYC and BCL2 double-hit B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in pediatric and young adult patients associated with poor prognosis. Pediatr Hematol Oncol 32:535–547. https://doi.org/10.3109/08880018.2015.1087611

Article 

留言 (0)

沒有登入
gif