Copper-coated hospital surfaces: reduction of total bacterial loads and resistant Acinetobacter spp.

Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D (2011) Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 377:228–241. https://doi.org/10.1016/S0140-6736(10)61458-4

Article  PubMed  Google Scholar 

ANVISA (2020) Boletim de Segurança do Paciente e Qualidade em Serviços de Saúde n23: Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência microbiana do ano de 2020.

Ayobami O, Willrich N, Suwono B, Eckmanns T, Markwart R (2020) The epidemiology of carbapenem-non-susceptible Acinetobacter species in Europe: analysis of EARS-Net data from 2013 to 2017. Antimicrob Resist Infect Control 9:1–10. https://doi.org/10.1186/s13756-020-00750-5

Article  Google Scholar 

Bardbari AM, Arabestani MR, Karami M, Keramat F, Alikhani MY, Bagheri KP (2017) Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog 108:122–128. https://doi.org/10.1016/j.micpath.2017.04.039

Article  CAS  PubMed  Google Scholar 

Borges Duarte DF, Gonçalves Rodrigues A (2022) Acinetobacter baumannii: insights towards a comprehensive approach for the prevention of outbreaks in health-care facilities. APMIS 130:330–337. https://doi.org/10.1111/apm.13227

Article  PubMed  Google Scholar 

Borkow G, Gabbay J (2005) Copper as a Biocidal Tool. Curr Med Chem 12:2163–2175. https://doi.org/10.2174/0929867054637617

Article  CAS  PubMed  Google Scholar 

Boyce JM (2007) Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 65:50–54. https://doi.org/10.1016/S0195-6701(07)60015-2

Article  PubMed  Google Scholar 

Boyle MA, Kearney A, Carling PC, Humphreys H (2019) ‘Off the rails’: hospital bed rail design, contamination, and the evaluation of their microbial ecology. J Hosp Infect 103:e16–e22. https://doi.org/10.1016/j.jhin.2019.06.008

Article  CAS  PubMed  Google Scholar 

Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TSJ (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77. https://doi.org/10.1016/j.jhin.2009.08.018

Article  CAS  PubMed  Google Scholar 

Catalano M, Quelle LS, Jeric PE, Di Martino A, Maimone SM (1999) Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect 42:27–35. https://doi.org/10.1053/jhin.1998.0535

Article  CAS  PubMed  Google Scholar 

CDC (2019) Acinetobacter in healthcare settings. In: heal infect https://www.cdc.gov/hai/organisms/acinetobacter.html

CSLI (2018) M100-S23 Performance Standards for Antimicrobial

Donald HM, Scaife W, Amyes SGB, Young HK (2000) Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother 44:196–199. https://doi.org/10.1128/AAC.44.1.196-199.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

ECDC (2019) Healthcare-associated infections acquired in intensive care units. Annual Epidemiological Report for 2017. Stockholm

ECDC (2020) Antimicrobial resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2019

Eze EC, Chenia HY, El Zowalaty ME (2018) Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 11:2277–2299. https://doi.org/10.2147/IDR.S169894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, Shadi A (2014) Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran. Iran Scientifica (cairo) 2014:1–6. https://doi.org/10.1155/2014/245162

Article  Google Scholar 

Faúndez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:1–7. https://doi.org/10.1186/1471-2180-4-19

Article  Google Scholar 

Friedrich AW (2019) Control of hospital acquired infections and antimicrobial resistance in Europe: the way to go. Wien Med Wochenschr 169:25–30. https://doi.org/10.1007/s10354-018-0676-5

Article  PubMed  PubMed Central  Google Scholar 

Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS (2019) Antimicrobial susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY antimicrobial surveillance program (1997–2016). Open Forum Infect Dis 6:S34–S46. https://doi.org/10.1093/ofid/ofy293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547. https://doi.org/10.1128/AEM.02766-10

Article  CAS  PubMed  Google Scholar 

Higgins PG, Wisplinghoff H, Stefanik D, Seifert H (2004) Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. J Antimicrob Chemother 54:821–823. https://doi.org/10.1093/jac/dkh427

Article  CAS  PubMed  Google Scholar 

Higgins PG, Wisplinghoff H, Stefanik D, Seifert H (2007) A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU P. Clin Microbiol Infect 13:1199–1201. https://doi.org/10.1111/j.1469-0691.2007.01819.x

Article  CAS  PubMed  Google Scholar 

Inkinen J, Mäkinen R, Keinänen-Toivola MM, Nordstrom K, Ahonen M (2017) Copper as an antibacterial material in different facilities. Lett Appl Microbiol 64:19–26. https://doi.org/10.1111/lam.12680

Article  CAS  PubMed  Google Scholar 

Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, McCarthy N, Paul P, McDonald C, Kallen A, Fiore A, Craig M, Baggs J (2020) Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N Engl J Med 382:1309–1319. https://doi.org/10.1056/nejmoa1914433

Article  CAS  PubMed  Google Scholar 

Karampatakis T, Tsergouli K, Iosifidis E, Antachopoulos C, Volakli E, Karyoti A, Sdougka M, Tsakris A, Roilides E (2019) Effects of an active surveillance program and enhanced infection control measures on carbapenem-resistant gram-negative bacterial carriage and infections in pediatric intensive care. Microb Drug Resist 25:1347–1356. https://doi.org/10.1089/mdr.2019.0061

Article  CAS  PubMed  Google Scholar 

Kramer A, Assadian O (2014) Survival of microorganisms on inanimate surfaces. In: Borkow G (ed) Use of biocidal surfaces for reduction of healthcare acquired infections. Springer International Publishing, Cham

Google Scholar 

Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? a systematic review. BMC Infect Dis 6:1–8. https://doi.org/10.1186/1471-2334-6-130

Article  Google Scholar 

Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszynski P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surfaces B Biointerfaces 128:17–22. https://doi.org/10.1016/j.colsurfb.2015.02.009

Article  CAS  PubMed  Google Scholar 

Kruk T, Gołda-Cępa M, Szczepanowicz K, Szyk-Warszynska L, Brzychzy-Wloch M, Kotarba A, Warszynski P (2019) Nanocomposite multifunctional polyelectrolyte thin films with copper nanoparticles as the antimicrobial coatings. Colloids Surfaces B Biointerfaces 181:112–118. https://doi.org/10.1016/j.colsurfb.2019.05.014

Article  CAS  PubMed  Google Scholar 

Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028

Article  CAS  PubMed  Google Scholar 

Lima WG, Brito JCM, Cardoso BG, Cardoso VN, de Paiva MC, de Lima ME, Fernandes SOA (2020) Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 39:1427–1438. https://doi.org/10.1007/s10096-020-03876-x

Article  CAS  PubMed  Google Scholar 

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Article  CAS  PubMed  Google Scholar 

Michels HT, Keevil CW, Salgado CD, Schmidt MG (2015) From laboratory research to a clinical trial: copper alloy surfaces kill bacteria and reduce hospital-acquired infections. Heal Environ Res Des J 9:64–79. https://doi.org/10.1177/1937586715592650

Article  Google Scholar 

Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87:1875–1879. https://doi.org/10.1007/s00253-010-2640-1

Article  CAS  PubMed  Google Scholar 

Montero DA, Arellano C, Pardo M, Vera R, Gálvez R, Cifuentes M, Berasain MA, Gómez M, Ramírez C, Vidal RM (2019) Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob Resist Infect Control 8:1–10. https://doi.org/10.1186/s13756-018-0456-4

Article  Google Scholar 

Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116. https://doi.org/10.3390/ijms16012099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park KH, Shin JH, Lee SY, Kim SH, Jang MO, Kang SJ, Jung SI, Chung EK, Ko KS, Jang HC (2013) The clinical characteristics, carbapenem resistance, and outcome of Acinetobacter bacteremia according to genospecies. PLoS ONE 8:4–8. https://doi.org/10.1371/journal.pone.0065026

Article  CAS  Google Scholar 

Popov S, Saphier O, Popov M, Shenker M, Entus S, Shotland Y, Saphier M (2020) Factors enhancing the antibacterial effect of monovalent copper ions. Curr Microbiol 77:361–368. https://doi.org/10.1007/s00284-019-01794-6

Article  CAS  PubMed  Google Scholar 

Ramirez MS, Bonomo RA, Tolmasky ME (2020) Carbapenemases: Transforming Acinetobacter baumannii into a yet more dangerous menace. Biomolecules 10:1–31. https://doi.org/10.3390/biom10050720

留言 (0)

沒有登入
gif