Prognostic value of creatinine-to-cystatin c ratio in patients with type 2 diabetes mellitus: a cohort study

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.

Article  PubMed  Google Scholar 

Chung SM, Moon JS, Chang MC. Prevalence of sarcopenia and its association with diabetes: a meta-analysis of community-dwelling asian population. Front Med. 2021;8: 681232. https://doi.org/10.3389/fmed.2021.681232.

Article  Google Scholar 

Low S, Pek S, Moh A, et al. Low muscle mass is associated with progression of chronic kidney disease and albuminuria—an 8-year longitudinal study in asians with type 2 diabetes. Diabetes Res Clin Pract. 2021;174: 108777. https://doi.org/10.1016/j.diabres.2021.108777.

Article  CAS  PubMed  Google Scholar 

Fukuda T, Bouchi R, Takeuchi T, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res Care. 2017;5(1): e000404. https://doi.org/10.1136/bmjdrc-2017-000404.

Article  PubMed  PubMed Central  Google Scholar 

Yang Q, Zhang Y, Zeng Q, et al. Correlation between diabetic peripheral neuropathy and sarcopenia in patients with type 2 diabetes mellitus and diabetic foot disease: a cross-sectional study. Diabetes Metab Syndr Obes. 2020;13:377–86. https://doi.org/10.2147/DMSO.S237362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakanishi S, Iwamoto M, Shinohara H, et al. Impact of sarcopenia on glycemic control and atherosclerosis in Japanese patients with type 2 diabetes: cross-sectional study using outpatient clinical data. Geriatr Gerontol Int. 2020;20(12):1196–201. https://doi.org/10.1111/ggi.14063.

Article  PubMed  Google Scholar 

Ida S, Nakai M, Ito S, et al. Association between sarcopenia and mild cognitive impairment using the japanese version of the SARC-F in elderly patients with diabetes. J Am Med Dir Assoc. 2017. https://doi.org/10.1016/j.jamda.2017.06.012.

Article  PubMed  Google Scholar 

Zhang Y, Weng S, Huang L, et al. Association of sarcopenia with a higher risk of infection in patients with type 2 diabetes. Diabetes Metab Res Rev. 2021. https://doi.org/10.1002/dmrr.3478.

Article  PubMed  PubMed Central  Google Scholar 

Miyake H, Kanazawa I, Tanaka KI, et al. Low skeletal muscle mass is associated with the risk of all-cause mortality in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab. 2019. https://doi.org/10.1177/2042018819842971.

Article  PubMed  PubMed Central  Google Scholar 

Kashani KB, Frazee EN, Kukralova L, et al. Evaluating muscle mass by using markers of kidney function: development of the sarcopenia index. Crit Care Med. 2017;45(1):e23–9. https://doi.org/10.1097/CCM.0000000000002013.

Article  PubMed  Google Scholar 

Ozturk Y, Deniz O, Coteli S, et al. Global leadership initiative on malnutrition criteria with different muscle assessments including muscle ultrasound with hospitalized internal medicine patients. JPEN J Parenter Enteral Nutr. 2022;46(4):936–45. https://doi.org/10.1002/jpen.2230.

Article  PubMed  Google Scholar 

Osaka T, Hamaguchi M, Hashimoto Y, et al. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;139:52–8. https://doi.org/10.1016/j.diabres.2018.02.025.

Article  CAS  PubMed  Google Scholar 

Hirai K, Tanaka A, Homma T, et al. Serum creatinine/cystatin C ratio as a surrogate marker for sarcopenia in patients with chronic obstructive pulmonary disease. Clin Nutr. 2021;40(3):1274–80. https://doi.org/10.1016/j.clnu.2020.08.010.

Article  CAS  PubMed  Google Scholar 

Ulmann G, Kai J, Durand JP, et al. Creatinine-to-cystatin c ratio and bioelectrical impedance analysis for the assessement of low lean body mass in cancer patients: comparison to l3-computed tomography scan. Nutrition. 2021;81: 110895. https://doi.org/10.1016/j.nut.2020.110895.

Article  CAS  PubMed  Google Scholar 

Jung CY, Joo YS, Kim HW, et al. Creatinine-cystatin c ratio and mortality in patients receiving intensive care and continuous kidney replacement therapy: a retrospective cohort study. Am J Kidney Dis. 2021. https://doi.org/10.1053/j.ajkd.2020.08.014.

Article  PubMed  Google Scholar 

Lee HS, Park KW, Kang J, et al. Sarcopenia index as a predictor of clinical outcomes in older patients with coronary artery disease. J Clin Med. 2020. https://doi.org/10.3390/jcm9103121.

Article  PubMed  PubMed Central  Google Scholar 

Liu W, Zhu X, Tan X, et al. Predictive value of serum creatinine/cystatin c in acute ischemic stroke patients under nutritional intervention. J Nutr Health Aging. 2021;25(3):335–9. https://doi.org/10.1007/s12603-020-1495-0.

Article  CAS  PubMed  Google Scholar 

Li S, Lu J, Gu G, et al. Serum creatinine-to-cystatin c ratio in the progression monitoring of non-alcoholic fatty liver disease. Front Physiol. 2021;12: 664100. https://doi.org/10.3389/fphys.2021.664100.

Article  PubMed  PubMed Central  Google Scholar 

Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7(5):512–4. https://doi.org/10.1002/jcsm.12147.

Article  PubMed  PubMed Central  Google Scholar 

Nishimura A, Harashima SI, Hosoda K, et al. Sex-related differences in frailty factors in older persons with type 2 diabetes: a cross-sectional study. Ther Adv Endocrinol Metab. 2019. https://doi.org/10.1177/2042018819833304.

Article  PubMed  PubMed Central  Google Scholar 

Sugimoto K, Tabara Y, Ikegami H, et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: the multicenter study for clarifying evidence for sarcopenia in patients with diabetes mellitus. J Diabetes Investig. 2019;10(6):1471–9. https://doi.org/10.1111/jdi.13070.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogama N, Sakurai T, Kawashima S, et al. Association of glucose fluctuations with sarcopenia in older adults with type 2 diabetes mellitus. J Clin Med. 2019. https://doi.org/10.3390/jcm8030319.

Article  PubMed  PubMed Central  Google Scholar 

Pechmann LM, Jonasson TH, Canossa VS, et al. Sarcopenia in type 2 diabetes mellitus: a cross-sectional observational study. Int J Endocrinol. 2020;2020:7841390. https://doi.org/10.1155/2020/7841390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348–54. https://doi.org/10.2215/CJN.02870707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pottel H, Delanaye P, Schaeffner E, et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017;32(3):497–507. https://doi.org/10.1093/ndt/gfw425.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruse NT, Buzkova P, Barzilay JI, et al. Association of skeletal muscle mass, kidney disease and mortality in older men and women: the cardiovascular health study. Aging. 2020;12(21):21023–36. https://doi.org/10.18632/aging.202135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rolland Y, Lauwers-Cances V, Cristini C, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) study. Am J Clin Nutr. 2009;89(6):1895–900. https://doi.org/10.3945/ajcn.2008.26950.

Article  CAS  PubMed  Google Scholar 

Landi F, Camprubi-Robles M, Bear DE, et al. Muscle loss: the new malnutrition challenge in clinical practice. Clin Nutr. 2019;38(5):2113–20. https://doi.org/10.1016/j.clnu.2018.11.021.

Article  CAS  PubMed  Google Scholar 

Deutz NEP, Ashurst I, Ballesteros MD, et al. The underappreciated role of low muscle mass in the management of malnutrition. J Am Med Dir Assoc. 2019;20(1):22–7. https://doi.org/10.1016/j.jamda.2018.11.021.

Article  PubMed  Google Scholar 

Czapla M, Karniej P, Juarez-Vela R, et al. The association between nutritional status and in-hospital mortality among patients with acute coronary syndrome-a result of the retrospective nutritional status heart study (NSHS). Nutrients. 2020. https://doi.org/10.3390/nu12103091.

Article  PubMed  PubMed Central  Google Scholar 

Sze S, Pellicori P, Kazmi S, et al. prevalence and prognostic significance of malnutrition using 3 scoring systems among outpatients with heart failure: a comparison with body mass index. JACC Heart Fail. 2018;6(6):476–86. https://doi.org/10.1016/j.jchf.2018.02.018.

Article  PubMed  Google Scholar 

Ahmed N, Choe Y, Mustad VA, et al. Impact of malnutrition on survival and healthcare utilization in medicare beneficiaries with diabetes: a retrospective cohort analysis. BMJ Open Diabetes Res Care. 2018;6(1): e000471. https://doi.org/10.1136/bmjdrc-2017-000471.

Article  PubMed  PubMed Central  Google Scholar 

Wei W, Zhang L, Li G, et al. Prevalence and prognostic significance of malnutrition in diabetic patients with coronary artery disease: a cohort study. Nutr Metab. 2021;18(1):102. https://doi.org/10.1186/s12986-021-00626-4.

Article  Google Scholar 

Mesinovic J, Zengin A, De Courten B, et al. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057–72. https://doi.org/10.2147/DMSO.S186600.

Article  PubMed  PubMed Central  Google Scholar 

Kanda E, Lopes MB, Tsuruya K, et al. The combination of malnutrition-inflammation and functional status limitations is associated with mortality in hemodialysis patients. Sci Rep. 2021;11(1):1582. https://doi.org/10.1038/s41598-020-80716-0.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif