The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Anderson BO, Cazap E, El Saghir NS, Yip C-H, Khaled HM, Otero IV, et al. Optimisation of breast cancer management in low-resource and middle-resource countries: executive summary of the Breast Health Global Initiative consensus, 2010. Lancet Oncol. 2011;12(4):387–98.

Article  PubMed  Google Scholar 

Cronin KA, Ravdin PM, Edwards BK. Sustained lower rates of breast cancer in the United States. Breast Cancer Res Treat. 2009;117(1):223.

Article  PubMed  Google Scholar 

Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.

Article  CAS  PubMed  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

Article  CAS  PubMed  Google Scholar 

Arneth B. Tumor microenvironment. Medicina. 2020;56(1):15.

Article  Google Scholar 

Giannone G, Ghisoni E, Genta S, Scotto G, Tuninetti V, Turinetto M, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J Mol Sci. 2020;21(12):4414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassim S, Pouyssegur J. Tumor microenvironment: a metabolic player that shapes the immune response. Int J Mol Sci. 2020;21(1):157.

Article  CAS  Google Scholar 

Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci. 2010;15(15):195–212.

Article  CAS  Google Scholar 

de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. 2019;9:1143.

Article  PubMed  PubMed Central  Google Scholar 

Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4.

Article  CAS  PubMed  Google Scholar 

Folkman J. What is the evidence that tumors are angiogenesis dependent? JNCI J Natl Cancer Inst. 1990;82(1):4–7.

Article  CAS  PubMed  Google Scholar 

Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.

Article  CAS  PubMed  Google Scholar 

Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.

Article  CAS  PubMed  Google Scholar 

Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–78.

Article  CAS  PubMed  Google Scholar 

Rini BI, Small EJ. Biology and clinical development of vascular endothelial growth factor–targeted therapy in renal cell carcinoma. J Clin Oncol. 2005;23(5):1028–43.

Article  CAS  PubMed  Google Scholar 

Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007;39(2):212–20.

Article  CAS  PubMed  Google Scholar 

Clauss M, Weich H, Breier G, Knies U, Röckl W, Waltenberger J, et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996;271(30):17629–34.

Article  CAS  PubMed  Google Scholar 

Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem. 1999;274(22):15732–9.

Article  CAS  PubMed  Google Scholar 

Kroll J, Waltenberger J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun. 1998;252(3):743–6.

Article  CAS  PubMed  Google Scholar 

Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7): a006502.

Article  PubMed  PubMed Central  Google Scholar 

Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol. 2008;28(2):322–8.

Article  CAS  PubMed  Google Scholar 

Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. 1996.

Li T, Zhu Y, Han L, Ren W, Liu H, Qin C. VEGFR-1 activation-induced MMP-9-dependent invasion in hepatocellular carcinoma. Future Oncol. 2015;11(23):3143–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

Article  CAS  PubMed  Google Scholar 

Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80.

Article  CAS  PubMed  Google Scholar 

Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109(3):227–41.

Article  CAS  Google Scholar 

Bach F, Uddin F, Burke D. Angiopoietins in malignancy. Eur J Surg Oncol (EJSO). 2007;33(1):7–15.

Article  CAS  PubMed  Google Scholar 

Schnurch H, Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development. 1993;119(3):957–68.

Article  CAS  PubMed  Google Scholar 

Schliemann C, Bieker R, Padro T, Kessler T, Hintelmann H, Buchner T, et al. Expression of angiopoietins and their receptor Tie2 in the bone marrow of patients with acute myeloid leukemia. Haematologica. 2006;91(9):1203–11.

CAS  PubMed  Google Scholar 

Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol. 2001;2(4):257–67.

Article  CAS  PubMed  Google Scholar 

Hegen A, Koidl S, Weindel K, Marmé D, Augustin HG, Fiedler U. Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol. 2004;24(10):1803–9.

Article  CAS  PubMed  Google Scholar 

Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci. 2007;104(9):3225–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li J-L, et al. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res. 2008;75(2):144–54.

Article  CAS  PubMed  Google Scholar 

Bender JG, Cooney EM, Kandel JJ, Yamashiro DJ. Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resist Updates. 2004;7(4–5):289–300.

Google Scholar 

Coutelle O, Schiffmann L, Liwschitz M, Brunold M, Goede V, Hallek M, et al. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer. 2015;112(3):495–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin L, Bromberg-White JL, Qian C-N. Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv Cancer Res. 2012;113:191–239.

Article  CAS  PubMed  Google Scholar 

Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Can Res. 2012;72(9):2162–71.

Article  CAS  Google Scholar 

Negri L, Ferrara N. The prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol Rev. 2018;98(2):1055–82.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif