Functions of retinal astrocytes and Müller cells in mammalian myopia

Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. The Complications of Myopia: A Review and Meta-Analysis. Invest Ophthalmol Vis Sci. 2020;61(4):49.

PubMed  PubMed Central  Google Scholar 

Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3–22.

PubMed  Google Scholar 

de Jong P. Myopia: its historical contexts. Br J Ophthalmol. 2018;0:1–7.

CAS  Google Scholar 

Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68.

CAS  PubMed  Google Scholar 

Li M, Yang Y, Jiang H, Gregori G, Roisman L, Zheng F, Ke B, Qu D, Wang J. Retinal Microvascular Network and Microcirculation Assessments in High Myopia. Am J Ophthalmol. 2017;174:56–67.

PubMed  Google Scholar 

Lim LS, Lim XH, Tan L. Retinal Vascular Oxygen Saturation and Its Variation With Refractive Error and Axial Length. Transl Vis Sci Technol. 2019;8(4):22.

PubMed  PubMed Central  Google Scholar 

Wang S. Choroidal thickness and high myopia: a cross-sectional study and meta-analysis. Shiming Wang1. 2015;15(70):1–10.

Google Scholar 

Francisco BM, Salvador M, Amparo N. Oxidative stress in myopia. Oxid Med Cell Longev. 2015;2015:750637.

PubMed  PubMed Central  Google Scholar 

Wu H, Chen W, Zhao F, Zhou Q, Reinach PS, Deng L, Ma L, Luo S, Srinivasalu N, Pan M, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A. 2018;115(30):E7091–100.

CAS  PubMed  PubMed Central  Google Scholar 

Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51:1–40.

CAS  PubMed  Google Scholar 

Lewis GP, Fisher SK. Up-Regulation of Glial Fibrillary Acidic Protein in Response to Retinal Injury: Its Potential Role in Glial Remodeling and a Comparison to Vimentin Expression. Int Rev Cytol. 2003;230:263-90. https://pubmed.ncbi.nlm.nih.gov/14692684/.

Luna G, Keeley PW, Reese BE, Linberg KA, Lewis GP, Fisher SK. Astrocyte structural reactivity and plasticity in models of retinal detachment. Exp Eye Res. 2016;150:4–21.

CAS  PubMed  PubMed Central  Google Scholar 

Abdel-Salam OME, Youness ER, Esmail RSE, Mohammed NA, Khadrawy YA, Sleem AA, Abdulaziz AM. Protection by Neostigmine and Atropine Against Brain and Liver Injury Induced by Acute Malathion Exposure. J Nanosci Nanotechnol. 2018;18(1):510–21.

CAS  PubMed  Google Scholar 

Upadhyay A, Beuerman RW. Biological Mechanisms of Atropine Control of Myopia. Eye Contact Lens. 2020;46(3):129–35.

PubMed  PubMed Central  Google Scholar 

Tkatchenko TV, Shen Y, Tkatchenko AV. Mouse experimental myopia has features of primate myopia. Invest Ophthalmol Vis Sci. 2010;51(3):1297–303.

PubMed  PubMed Central  Google Scholar 

Zhang X, Wang X, Wang S, Peng W, Ullah R, Fu J, Zhou Y, Shen Y. Trilogy Development of Proopiomelanocortin Neurons From Embryonic to Adult Stages in the Mice Retina. Front Cell Dev Biol. 2021;9:718851.

PubMed  PubMed Central  Google Scholar 

Mense SM, Sengupta A, Zhou M, Lan C, Bentsman G, Volsky DJ, Zhang L. Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in primary human astrocytes. Physiol Genomics. 2006;25(3):435–49.

CAS  PubMed  Google Scholar 

Heng JS, Rattner A, Stein-O’Brien GL, Winer BL, Jones BW, Vernon HJ, Goff LA, Nathans J. Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution. Proc Natl Acad Sci U S A. 2019;116(18):9103–14.

CAS  PubMed  PubMed Central  Google Scholar 

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460-6.

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–8.

CAS  PubMed  Google Scholar 

Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, Hammond CJ, Verhoeven VJM, Klaver CCW, Consortium C. IMI - Myopia Genetics Report. Invest Ophthalmol Vis Sci. 2019;60(3):M89–105.

Google Scholar 

Yang D, Cao D, Zhang L, Yang C, Lan J, Zhang Y, Zeng J: Macular and peripapillary vessel density in myopic eyes of young Chinese adults. Clinical and Experimental Optometry 2020.

Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, Wang L, Lu F, Shen M. Retinal Microvasculature Alteration in High Myopia. Invest Ophthalmol Vis Sci. 2016;57(14):6020–30.

PubMed  Google Scholar 

Mathis U, Ziemssen F, Schaeffel F. Effects of a human VEGF antibody (Bevacizumab) on deprivation myopia and choroidal thickness in the chicken. Exp Eye Res. 2014;127:161–9.

CAS  PubMed  Google Scholar 

tkatchenko: Form deprivation modulates retinal neurogenesis in primate experimental myopia. PNAS 2006.

Giummarra L, Crewther SG, Riddell N, Murphy MJ, Crewther DP. Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia. PeerJ. 2018;6:e5048.

PubMed  PubMed Central  Google Scholar 

Casanas MN, Santos E, Yanes C, Romero-Aleman MM, Vinoly R, Alfayate MC, Monzon-Mayor M. Development of astroglia heterogeneously expressing Pax2, vimentin and GFAP during the ontogeny of the optic pathway of the lizard (Gallotia galloti): an immunohistochemical and ultrastructural study. Cell Tissue Res. 2011;345(3):295–311.

CAS  PubMed  Google Scholar 

Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020;68(4):768–96.

PubMed  Google Scholar 

Lindqvist N, Liu Q, Zajadacz J, Franze K, Reichenbach A. Retinal glial (Muller ) cells: sensing and responding to tissue stretch. Invest Ophthalmol Vis Sci. 2010;51(3):1683–90.

PubMed  Google Scholar 

Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. Neurochem Res. 2015;40(12):2600–14.

CAS  PubMed  Google Scholar 

Goodyear MJ, Crewther SG, Junghans BM. A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci. 2009;26(2):159–65.

PubMed  Google Scholar 

Lange J, Yafai Y, Reichenbach A, Wiedemann P, Eichler W. Regulation of Pigment Epithelium–Derived Factor Production and Release by Retinal Glial (Müller) Cells under Hypoxia. Investigative Opthalmology & Visual Science. 2008;49(11):5161-7. https://pubmed.ncbi.nlm.nih.gov/18676622/.

Lin C, Toychiev A, Slavi N, Srinivas M, Nour A, Benavente-Perez A. Myopia-related changes in the retinal capillaries and co-localized astrocytes of juvenile marmosets. Invest Ophthalmol Vis Sci. 2019;60(9):5872. https://iovs.arvojournals.org/article.aspx?articleid=2745032.

Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, Liddelow SA, Nguyen PT, Nakao-Inoue H, Dorman LC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359(6381):1269–73.

CAS  PubMed  PubMed Central  Google Scholar 

Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci. 2013;14(5):311–21.

CAS  PubMed  PubMed Central  Google Scholar 

Prusky GT, Douglas RM. Developmental plasticity of mouse visual acuity. Eur J Neurosci. 2003;17(1):167–73.

PubMed  Google Scholar 

He C, Sun Y, Ren X, Lin Q, Hu X, Huang X, Su SB, Liu Y, Liu X. Angiogenesis mediated by toll-like receptor 4 in ischemic neural tissue. Arterioscler Thromb Vasc Biol. 2013;33(2):330–8.

CAS  PubMed  Google Scholar 

Morozumi W, Inagaki S, Iwata Y, Nakamura S, Hara H, Shimazawa M. Piezo channel plays a part in retinal ganglion cell damage. Exp Eye Res. 2020;191:107900.

CAS  PubMed  Google Scholar 

Lam HB, Yeh CH, Cheng KC, Hsu CT, Cheng JT. Effect of cholinergic denervation on hepatic fibrosis induced by carbon tetrachloride in rats. Neurosci Lett. 2008;438(1):90–5.

CAS  PubMed  Google Scholar 

Wen Y, Dai B, Zhang X, Zhu H, Xie C, Xia J, Sun Y, Zhu M, Tong J, Shen Y. Retinal Transcriptomics Analysis Reveals the Underlying Mechanism of Disturbed Emmetropization Induced by Wavelength Defocus. Current Eye Researchs. 2022;47(6):908-17. https://pubmed.ncbi.nlm.nih.gov/35225751/.

Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, Ho C, Iuvone PM, Beuerman RW, Zhou L. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res. 2014;13(11):4647–58.

CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Banerjee S, So C, Qiu C, Sze Y, Lam TC, To CH, Pan F. The Effect of Low-Dose Atropine on Alpha Ganglion Cell Signaling in the Mouse Retina. Front Cell Neurosci. 2021;15:664491.

CAS  PubMed  PubMed Central  Google Scholar 

Yan X, Jiang E, Weng HR. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta. J Neuroinflammation. 2015;12:222.

PubMed  PubMed Central  Google Scholar 

Liu P, Yuan HB, Zhao S, Liu FF, Jiang YQ, Guo YX, Wang XL. Activation of GABAB Receptor Suppresses Diabetic Neuropathic Pain through Toll-Like Receptor 4 Signaling Pathway in the Spinal Dorsal Horn. Mediators Inflamm. 2018;2018:6016272.

PubMed  PubMed Central  Google Scholar 

Ueki Y, Reh TA. Activation of BMP-Smad1/5/8 signaling promotes survival of retinal ganglion cells after damage in vivo. PLoS One. 2012;7(6):e38690.

CAS  PubMed  PubMed Central  Google Scholar 

Yao Y, Ni D, Su T, Sui A, Yao Y, Zhu Y, Xie B. Effect of inhibitor of differentiation 1 deficiency on ocular neovascularization. J Shanghai Jiaotong Univ Med Sci. 2019;39(4):358–65.

Google Scholar 

Menuchin-Lasowski Y, Dagan B, Conidi A, Cohen-Gulkar M, David A, Ehrlich M, Giladi PO, Clark BS, Blackshaw S, Shapira K, et al. Zeb2 regulates the balance between retinal interneurons and Muller glia by inhibition of BMP-Smad signaling. Dev Biol. 2020;468(1–2):80–92.

CAS  PubMed  PubMed Central  Google Scholar 

Rattner A, Nathans J. The genomic response to retinal disease and injury: evidence for endothelin signaling from photoreceptors to glia. J Neurosci. 2005;25(18):4540–9.

CAS 

留言 (0)

沒有登入
gif