Early postnatal alterations in follicular stress response and survival in a mouse model of Classic Galactosemia

Reichardt JK, Woo SL. Molecular basis of galactosemia: mutations and polymorphisms in the gene encoding human galactose-1-phosphate uridylyltransferase. Proc Natl Acad Sci U S A. 1991;88(7):2633–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rubio-Gozalbo ME, Haskovic M, Bosch AM, Burnyte B, Coelho AI, Cassiman D, et al. The natural history of classic galactosemia: lessons from the GalNet registry. Orphanet J Rare Dis. 2019;14(1):86.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fridovich-Keil JL, Gubbels CS, Spencer JB, Sanders RD, Land JA, Rubio-Gozalbo E. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis. 2011;34(2):357–66.

Article  PubMed  CAS  Google Scholar 

Yuzyuk T, Balakrishnan B, Schwarz EL, De Biase I, Hobert J, Longo N, et al. Effect of genotype on galactose-1-phosphate in classic galactosemia patients. Mol Genet Metab. 2018;125(3):258–65.

Article  PubMed  CAS  Google Scholar 

Demirbas D, Coelho AI, Rubio-Gozalbo ME, Berry GT. Hereditary galactosemia. Metabolism. 2018;83:188–96.

Article  PubMed  CAS  Google Scholar 

Segal S, Berry G. Disorders of galactose metabolism. CR S, AL B, WS S, D V, editors. The metabolic and molecular basis of inherited disease. 7th New York: McGraw-Hill; 1995. 967–1000.

Balakrishnan B, Siddiqi A, Mella J, Lupo A, Li E, Hollien J, et al. Salubrinal enhances eIF2alpha phosphorylation and improves fertility in a mouse model of classic Galactosemia. Biochim Biophys Acta Mol basis Dis. 2019;1865(11):165516.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Slepak TI, Tang M, Slepak VZ, Lai K. Involvement of endoplasmic reticulum stress in a novel classic Galactosemia model. Mol Genet Metab. 2007;92(1–2):78–87.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Haskovic M, Coelho AI, Lindhout M, Zijlstra F, Veizaj R, Vos R, et al. Nucleotide sugar profiles throughout development in wildtype and Galt knockout zebrafish. J Inherit Metab Dis. 2020;43(5):994–1001.

De-Souza EA, Pimentel FSA, Machado CM, Martins LS, Da-Silva WS, Montero-Lomelí M, et al. The unfolded protein response has a protective role in yeast models of classic galactosemia. DMM Dis Models Mech. 2014;7(1):55–61.

CAS  Google Scholar 

Coman DJ, Murray DW, Byrne JC, Rudd PM, Bagaglia PM, Doran PD, et al. Galactosemia, a single gene disorder with epigenetic consequences. Pediatr Res. 2010;67(3):286–92.

Article  PubMed  Google Scholar 

Daenzer JM, Fridovich-Keil JL. Drosophila melanogaster models of Galactosemia. Curr Top Dev Biol. 2017;121:377–95.

Article  PubMed  CAS  Google Scholar 

Laven JS. Primary ovarian insufficiency. Semin Reprod Med. 2016;34(4):230–4.

Article  PubMed  Google Scholar 

Hagen-Lillevik SJ, Rushing JS, Appiah L, Longo N, Andrews A, Lai K, et al. Pathophysiology and Management of Classic Galactosemic primary ovarian insufficiency. Reprod Fertil. 2021;2(3):R67–84.

Hadji P. Menopausal symptoms and adjuvant therapy-associated adverse events. Endocr Relat Cancer. 2008;15(1):73–90.

Article  PubMed  CAS  Google Scholar 

Tao XY, Zuo AZ, Wang JQ, Tao FB. Effect of primary ovarian insufficiency and early natural menopause on mortality: a meta-analysis. Climacteric. 2016;19(1):27–36.

Article  PubMed  Google Scholar 

Groff AA, Covington SN, Halverson LR, Fitzgerald OR, Vanderhoof V, Calis K, et al. Assessing the emotional needs of women with spontaneous premature ovarian failure. Fertil Steril. 2005;83(6):1734–41.

Article  PubMed  Google Scholar 

Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. Plos One. 2010;5(1):e8772.

Article  PubMed  PubMed Central  Google Scholar 

Oktay KH, Bedoschi G, Goldfarb SB, Taylan E, Titus S, Palomaki GE, et al. Increased chemotherapy-induced ovarian reserve loss in women with germline BRCA mutations due to oocyte deoxyribonucleic acid double strand break repair deficiency. Fertil Steril. 2020;113(6):1251–60.e1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guzel E, Arlier S, Guzeloglu-Kayisli O, Tabak MS, Ekiz T, Semerci N, et al. Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. Int J Mol Sci. 2017;18(4):792.

Harada M, Nose E, Takahashi N, Hirota Y, Hirata T, Yoshino O, et al. Evidence of the activation of unfolded protein response in granulosa and cumulus cells during follicular growth and maturation. Gynecol Endocrinol. 2015;31(10):783–7.

Article  PubMed  CAS  Google Scholar 

Levy HL, Driscoll SG, Porensky RS, Wender DF. Ovarian failure in galactosemia. N Engl J Med. 1984;310(1):50.

Article  PubMed  CAS  Google Scholar 

Rubio-Gozalbo ME, Gubbels CS, Bakker JA, Menheere PP, Wodzig WK, Land JA. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update. 2010;16(2):177–88.

Article  PubMed  CAS  Google Scholar 

Roness H, Gavish Z, Cohen Y, Meirow D. Ovarian follicle burnout: a universal phenomenon? Cell Cycle (Georgetown, Tex). 2013;12(20):3245–6.

Article  CAS  Google Scholar 

Tang M, Siddiqi A, Witt B, Yuzyuk T, Johnson B, Fraser N, et al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse model. Eur J Hum Genet. 2014;22(10):1172–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Balakrishnan B, Chen W, Tang M, Huang X, Cakici DD, Siddiqi A, et al. Galactose-1 phosphate uridylyltransferase (GalT) gene: a novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts. Biochem Biophys Res Commun. 2016;470(1):205–12.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Balakrishnan B, Nicholas C, Siddiqi A, Chen W, Bales E, Feng M, et al. Reversal of aberrant PI3K/Akt signaling by Salubrinal in a GalT-deficient mouse model. Biochim Biophys Acta Mol basis Dis. 2017;1863(12):3286–93.

Article  PubMed  CAS  Google Scholar 

Balakrishnan B, An D, Nguyen V, DeAntonis C, Martini PGV, Lai K. Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic Galactosemia. Mol Ther. 2020;28(1):304–12.

Article  PubMed  CAS  Google Scholar 

Chen W, Caston R, Balakrishnan B, Siddiqi A, Parmar K, Tang M, et al. Assessment of ataxia phenotype in a new mouse model of galactose-1 phosphate uridylyltransferase (GALT) deficiency. J Inherit Metab Dis. 2017;40(1):131–7.

Article  PubMed  CAS  Google Scholar 

Llerena Cari E, Hagen-Lillevik S, Giornazi A, Post M, Komar AA, Appiah L, et al. Integrated stress response control of granulosa cell translation and proliferation during normal ovarian follicle development. Mol Hum Reprod. 2021;27(8):gaab050.

Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17(10):1374–95.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Colegrove-Otero LJ, Minshall N, Standart N. RNA-binding proteins in early development. Crit Rev Biochem Mol Biol. 2005;40(1):21–73.

Article  PubMed  CAS  Google Scholar 

Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511.

Article  PubMed  CAS  Google Scholar 

Komar AA, Merrick WC. A retrospective on eIF2A-and not the alpha subunit of eIF2. Int J Mol Sci. 2020;21(6).

Le Bouffant R, Boulben S, Cormier P, Mulner-Lorillon O, Bellé R, Morales J. Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos. Exp Cell Res. 2008;314(5):961–8.

Article  PubMed  Google Scholar 

Alves VS, Motta FL, Roffe M, Delamano A, Pesquero JB, Castilho BA. GCN2 activation and eIF2alpha phosphorylation in the maturation of mouse oocytes. Biochem Biophys Res Commun. 2009;378(1):41–4.

Article  PubMed  CAS  Google Scholar 

Uslu B, Dioguardi CC, Haynes M, Miao DQ, Kurus M, Hoffman G, et al. Quantifying growing versus non-growing ovarian follicles in the mouse. J Ovarian Res. 2017;10(1):3.

Article  PubMed  PubMed Central  Google Scholar 

Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64.

Article  PubMed  CAS  Google Scholar 

Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod. 2021;27(1):gaaa088.

Hua D, Zhou Y, Lu Y, Zhao C, Qiu W, Chen J, et al. Lipotoxicity impairs granulosa cell function through activated endoplasmic reticulum stress pathway. Reprod Sci. 2020;27(1):119–31.

Article  PubMed  CAS  Google Scholar 

Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y, et al. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod. 2020;35(5):1145–58.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu G, Shi F, Blas-Machado U,

留言 (0)

沒有登入
gif