A case study: Correlation of the nutrient composition in Chinese Hamster Ovary cultures with cell growth, antibody titre and quality attributes using multivariate analyses for guiding medium and feed optimization in early upstream process development

Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7:61–74. https://doi.org/10.1002/BIOT.201100052

Article  CAS  PubMed  Google Scholar 

Altamirano C, Paredes C, Cairó JJ, Gòdia F (2000) Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75. https://doi.org/10.1021/BP990124J

Article  CAS  PubMed  Google Scholar 

Behjousiar A, Kontoravdi C, Polizzi KM (2012) In situ monitoring of intracellular glucose and glutamine in CHO cell culture. PLoS ONE 7:e34512. https://doi.org/10.1371/JOURNAL.PONE.0034512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esteve JM, Mompo J, Asuncion JG et al (1999) Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J 13:1055–1064. https://doi.org/10.1096/fasebj.13.9.1055

Article  CAS  PubMed  Google Scholar 

Fan Y, Ley D, Andersen MR (2018) Fed-batch CHO cell culture for lab-scale antibody production. Methods Mol Biol 1674:147–161. https://doi.org/10.1007/978-1-4939-7312-5_12/COVER

Article  CAS  PubMed  Google Scholar 

Genzel Y, Ritter JB, König S et al (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21:58–69. https://doi.org/10.1021/BP049827D

Article  CAS  PubMed  Google Scholar 

Gramer MJ, Eckblad JJ, Donahue R et al (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108:1591–1602. https://doi.org/10.1002/bit.23075

Article  CAS  PubMed  Google Scholar 

Hayter PM, Curling EMA, Baines AJ et al (1992) Glucose-limited chemostat culture of chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol Bioeng 39:327–335. https://doi.org/10.1002/bit.260390311

Article  CAS  PubMed  Google Scholar 

ICH (1999) Q6B: specifications: test procedures and acceptance criteria for biotechnological/biological products step 5 note for guidance on specifications: test procedures and acceptance criteria for biotechnological/biological products

Jing Y, Borys M, Nayak S et al (2012) Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochem 47:69–75. https://doi.org/10.1016/j.procbio.2011.10.009

Article  CAS  Google Scholar 

Kaur R, Borgayari D, Rathore AS (2017) Impact of media components on CQAs of monoclonal antibodies. Biopharm Int 30:40–46. https://doi.org/10.1038/SREP45216

Article  Google Scholar 

Kishishita S, Katayama S, Kodaira K et al (2015) Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 120:78–84. https://doi.org/10.1016/j.jbiosc.2014.11.022

Article  CAS  PubMed  Google Scholar 

Ma N, Ellet JA, Okediadi C et al (2009) A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: improved productivity and lactate metabolism. Biotechnol Prog 25:1353–1363. https://doi.org/10.1002/btpr.238

Article  CAS  PubMed  Google Scholar 

Rathore A (2007) Applications of multivariate data analysis in biotech processing. Biopharm Int 20:40–45

Google Scholar 

Rathore AS, Kumar Singh S, Pathak M et al (2015) Fermentanomics: relating quality attributes of a monoclonal antibody to cell culture process variables and raw materials using multivariate data analysis. Biotechnol Prog 31:1586–1599. https://doi.org/10.1002/BTPR.2155

Article  CAS  PubMed  Google Scholar 

Ritacco FV, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34:1407–1426. https://doi.org/10.1002/btpr.2706

Article  CAS  PubMed  Google Scholar 

Sellick CA, Croxford AS, Maqsood AR et al (2011) Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol Bioeng 108:3025–3031. https://doi.org/10.1002/bit.23269

Article  CAS  PubMed  Google Scholar 

Sellick CA, Croxford AS, Maqsood AR et al (2015) Metabolite profiling of CHO cells: molecular reflections of bioprocessing effectiveness. Biotechnol J 10:1434–1445. https://doi.org/10.1002/biot.201400664

Article  CAS  PubMed  Google Scholar 

Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111

Article  PubMed  Google Scholar 

Templeton N, Dean J, Reddy P, Young JD (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110:2013–2024. https://doi.org/10.1002/bit.24858

Article  CAS  PubMed  Google Scholar 

Tsang VL, Wang AX, Yusuf-Makagiansar H, Ryll T (2014) Development of a scale down cell culture model using multivariate analysis as a qualification tool. Biotechnol Prog 30:152–160. https://doi.org/10.1002/BTPR.1819

Article  CAS  PubMed  Google Scholar 

Wong DCF, Wong KTK, Goh LT et al (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177. https://doi.org/10.1002/bit.20317

Article  CAS  Google Scholar 

Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622. https://doi.org/10.1002/bit.20151

Article  CAS  PubMed  Google Scholar 

Zhang H, Lennox B (2004) Integrated condition monitoring and control of fed-batch fermentation processes. J Process Control 14:41–50. https://doi.org/10.1016/S0959-1524(03)00044-1

Article  CAS  Google Scholar 

Zhang P, Woen S, Wang T et al (2016) Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 21:740–765. https://doi.org/10.1016/J.DRUDIS.2016.01.006

Article  CAS  PubMed  Google Scholar 

Zhang X, Jiang R, Lin H, Xu S (2020) Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Biotechnol Prog 36:e2975. https://doi.org/10.1002/BTPR.2975

Article  CAS  PubMed  Google Scholar 

Zürcher P, Sokolov M, Brühlmann D et al (2020) Cell culture process metabolomics together with multivariate data analysis tools opens new routes for bioprocess development and glycosylation prediction. Biotechnol Prog 36:e3012. https://doi.org/10.1002/BTPR.3012

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif