VdERG2 was involved in ergosterol biosynthesis, nutritional differentiation and virulence of Verticillium dahliae

Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta (BBA) Biomembr 1788:743–752

Article  CAS  Google Scholar 

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

Article  CAS  PubMed  Google Scholar 

Bhattacharya S, Esquivel BD, White TC (2018) Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. Mbio 9:e01291-e11218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, Liu J (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 8(25)

Chau AS, Gurnani M, Hawkinson R, Laverdiere M, Cacciapuoti A, McNicholas PM (2005) Inactivation of sterol Δ5, 6-desaturase attenuates virulence in Candida albicans. Antimicrob Agents Chemother 49:3646–3651

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiocchio V, Matković L (2011) Determination of ergosterol in cellular fungi by HPLC. A modified technique. J Argent Chem Soc 98:10–15

CAS  Google Scholar 

Depotter JR, Shi-Kunne X, Missonnier H, Liu T, Faino L, van den Berg GC, Wood TA, Zhang B, Jacques A, Seidl MF (2018) Dynamic virulence-related regions of the fungal plant pathogen Verticillium dahliae display remarkably enhanced sequence conservation. BioRxiv: 277558

Duressa D, Anchieta A, Chen D, Klimes A, Garcia-Pedrajas MD, Dobinson KF, Klosterman SJ (2013) RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC Genomics 14:1–18

Article  Google Scholar 

Fan R, Klosterman SJ, Wang C, Subbarao KV, Xu X, Shang W, Hu X (2017) Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet Biol 98:1–11

Article  CAS  PubMed  Google Scholar 

Fassler JS, West AH (2011) Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell 10:156–167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraczek MG, Zhao C, Dineen L, Lebedinec R, Bowyer P, Bromley M, Delneri D (2019) Fast and reliable PCR amplification from Aspergillus fumigatus spore suspension without traditional DNA extraction. Curr Protoc Microbiol 54:e89

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gessner MO (2020) Ergosterol as a measure of fungal biomass Methods to study litter decomposition. Methods to Study Litter Decomposition. pp 247–255

Glenn G, Andreou LV (2013) Analysis of DNA by Southern blotting. In Methods in Enzymology. pp 47–63

Gong Q, Yang Z, Wang X, Butt HI, Chen E, He S, Zhang C, Zhang X, Li F (2017) Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC Plant Biol 17:1–15

Article  Google Scholar 

Guo C, Yang X, Shi H, Chen C, Hu Z, Zheng X, Yang X, Xie C (2022) Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol 15:2040–2054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernández A, Herrera-Palau R, Madroñal JM, Albi T, López-Lluch G, Perez-Castiñeira JR, Navas P, Valverde F, Serrano A (2016) Vacuolar H+-pyrophosphatase AVP1 is involved in amine fungicide tolerance in Arabidopsis thaliana and provides tridemorph resistance in yeast. Front Plant Sci 7:85

Article  PubMed  PubMed Central  Google Scholar 

Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Ind J Microbiol 57:270–277

Article  CAS  Google Scholar 

Johnson DA, Dung JK (2010) Verticillium wilt of potato-the pathogen, disease and management. Can J Plant Path 32:58–67

Article  CAS  Google Scholar 

Johnston EJ, Moses T, Rosser SJ (2020) The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 37:27–44

Article  CAS  PubMed  Google Scholar 

Jordá T, Barba-Aliaga M, Rozès N, Alepuz P, Martínez-Pastor MT, Puig S (2022) Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency. Environ Microbiol 5248–5260

Jordá T, Puig S (2020) Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 11:795

Article  PubMed  PubMed Central  Google Scholar 

Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 43:283–294

Article  CAS  PubMed  Google Scholar 

Klimes A, Amyotte SG, Grant S, Kang S, Dobinson KF (2008) Microsclerotia development in Verticillium dahliae: regulation and differential expression of the hydrophobin gene VDH1. Fungal Genet Biol 45:1525–1532

Article  CAS  PubMed  Google Scholar 

Lees ND, Bard M, Kirsch DR (2020) Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae biochemistry and function of sterols. CRC Press, 85–99.

Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li K-N, Rouse D, Eyestone E, German T (1999) The generation of specific DNA primers using random amplified polymorphic DNA and its application to Verticillium dahliae. Mycol Res 103:1361–1368

Article  CAS  Google Scholar 

Li X, Su X, Lu G, Sun G, Zhang Z, Guo H, Guo N, Cheng H (2020) VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae. Curr Genet 66:345–359

Article  CAS  PubMed  Google Scholar 

Li T, Huang C-m, Zhang D-d, Ran L, Chen J-y, Sun W-x, Qiu N-w, Dai X-f (2021) Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae. J Integr Agric 20:1858–1870

Article  Google Scholar 

Li Z, Pan J, Zhu X (2012) Agrobacterium tumefaciens-mediated transformation (ATMT) for the screening for genes involved in laccase glucose repression in the pathogenic yeast Cryptococcus neoformans. Wei Sheng Wu Xue Bao Acta Microbiol Sin 52:44–51

Google Scholar 

Liu X, Fu J, Yun Y, Yin Y, Ma Z (2011) A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665–1675

Article  CAS  PubMed  Google Scholar 

Liu X, Jiang J, Yin Y, Ma Z (2013) Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. Mol Plant Pathol 14:71–83

Article  CAS  PubMed  Google Scholar 

Liu J, Nie J, Chang Y, Huang L (2021a) Nep1-like proteins from valsa mali differentially regulate pathogen virulence and response to abiotic stresses. J Fung 7:830

Article  CAS  Google Scholar 

Liu L, Wang Z, Li J, Wang Y, Yuan J, Zhan J, Wang P, Lin Y, Li F, Ge X (2021b) Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. Mol Plant Pathol 22:1109–1120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Zhang Y-D, Zhang D-D, Zhang Y-Y, Wang D, Song J, Zhang J, Li R, Kong Z-Q, Klosterman SJ (2021c) Biological characteristics of Verticillium dahliae MAT1-1 and MAT1-2 strains. Int J Mol Sci 22:7148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo X, Mao H, Wei Y, Cai J, Xie C, Sui A, Yang X, Dong J (2016) The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. Mol Plant Pathol 17:1364–1381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Y, Zeng F, Hu J, Li P, Xiao S, Zhou L, Gong J, Liu Y, Hao Z, Cao Z (2022) Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. Mol Plant Pathol 23:32–44

Article  CAS  PubMed  Google Scholar 

Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H (1999) Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 10:3943–3957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nahar L, Onder A, Sarker SD (2020) A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochem Anal 31:413–457

Article  CAS  PubMed  Google Scholar 

Okoli C, Carder J, Barbara D (1993) Molecular variation and sub-specific groupings within Verticillium dahliae. Mycol Res 97:233–239

Article  CAS  Google Scholar 

Paz Z, García-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montañez L, Gold SE (2011) One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48:677–684

Article  CAS  PubMed  Google Scholar 

Ping W, Rong Z (2006) Determination of organic acids exuded from plant roots by high performance liquid chromatography. Chin J Chromatogr 24:239–243

Article  Google Scholar 

Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol 2:499–511

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif