Microfluidic hotspots in bacteria research: A review of soil and related advances

Adadevoh, J.S., Ramsburg, C.A., Ford, R.M., 2018. Chemotaxis increases the retention of bacteria in porous media with residual NAPL entrapment. Environmental Science & Technology 52, 7289–7295.

CAS  Google Scholar 

Adadevoh, J.S., Triolo, S., Ramsburg, C.A., Ford, R.M., 2016. Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environmental Science & Technology 50, 181–187.

CAS  Google Scholar 

Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J. C., Marquez, M., Klibanov, A.M., Griffiths, A.D., Weitz, D.A., 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America 107, 4004–4009.

CAS  Google Scholar 

Aleklett, K., Kiers, E.T., Ohlsson, P., Shimizu, T.S., Caldas, V.E., Hammer, E.C., 2018. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME Journal 12, 312–319.

Google Scholar 

Alkayyali, T., Pope, E., Wheatley, S.K., Cartmell, C., Haltli, B., Kerr, R. G., Ahmadi, A., 2021. Development of a microbe domestication pod (MD Pod) for in situ cultivation of micro-encapsulated marine bacteria. Biotechnology and Bioengineering 118, 1166–1176.

CAS  Google Scholar 

Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., Garbisu, C., 2003. Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health 18, 65–73.

Google Scholar 

Arber, W., 2000. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiology Reviews 24, 1–7.

CAS  Google Scholar 

Berthold, T., Centler, F., Hübschmann, T., Remer, R., Thullner, M., Harms, H., Wick, L.Y., 2016. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Scientific Reports 6, 36390.

CAS  Google Scholar 

Boedicker, J.Q., Li, L., Kline, T.R., Ismagilov, R.F., 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab on a Chip 8, 1265–1272.

CAS  Google Scholar 

Boedicker, J.Q., Vincent, M.E., Ismagilov, R.F., 2009. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie 121, 6022–6025.

Google Scholar 

Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P.A., Redmile-Gordon, M., Huang, Q., 2019. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters 1, 85–93.

Google Scholar 

Capone, D., Bivins, A., Knee, J., Cumming, O., Nalá, R., Brown, J., 2021. Quantitative microbial risk assessment of pediatric infections attributable to ingestion of fecally contaminated domestic soils in low-income urban Maputo, Mozambique. Environmental Science & Technology 55, 1941–1952.

CAS  Google Scholar 

Cheng, S., Wang, Z., Ge, S., Wang, H., He, P., Fang, Y., Wang, Q., 2012. Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchimica Acta 176, 295–301.

CAS  Google Scholar 

Cheng, S.Y., Heilman, S., Wasserman, M., Archer, S., Shuler, M.L., Wu, M., 2007. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab on a Chip 7, 763–769.

CAS  Google Scholar 

Churski, K., Kaminski, T.S., Jakiela, S., Kamysz, W., Baranska-Rybak, W., Weibel, D.B., Garstecki, P., 2012. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip 12, 1629–1637.

CAS  Google Scholar 

Cirz, R.T., Chin, J.K., Andes, D.R., de Crécy-Lagard, V., Craig, W.A., Romesberg, F.E., 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology 3, e176.

Google Scholar 

Cooper, R., Tsimring, L., Hasty, J., 2018. Microfluidics-based analysis of contact-dependent bacterial interactions. Bio-Protocol 8, e2970.

CAS  Google Scholar 

Cooper, R.M., Tsimring, L., Hasty, J., 2017. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. eLife 6, e25950.

Google Scholar 

Coyte, K.Z., Tabuteau, H., Gaffney, E.A., Foster, K.R., Durham, W.M., 2017. Microbial competition in porous environments can select against rapid biofilm growth. Proceedings of the National Academy of Sciences of the United States of America 114, E161–E170.

CAS  Google Scholar 

Cruz, B.C., Furrer, J.M., Guo, Y.S., Dougherty, D., Hinestroza, H.F., Hernandez, J.S., Gage, D.J., Cho, Y.K., Shor, L.M., 2017. Pore-scale water dynamics during drying and the impacts of structure and surface wettability. Water Resources Research 53, 5585–5600.

Google Scholar 

Dazzo, F.B., Schmid, M., Hartmann, A., 2007. Immunofluorescence Microscopy and Fluorescence in situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-associated Microbial Autecology. In: Hurst, C.J., ed. Manual of Environmental Microbiology, Third Edition. American Society of Microbiology, pp. 712–733.

de Vries, F.T., Wallenstein, M.D., 2017. Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology 105, 913–920.

Google Scholar 

Drescher, K., Shen, Y., Bassler, B.L., Stone, H.A., 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America 110, 4345–1350.

CAS  Google Scholar 

Eisenhauer, N., Antunes, P.M., Bennett, A.E., Birkhofer, K., Bissett, A., Bowker, M.A., Caruso, T., Chen, B., Coleman, D.C., Boer, W.D., 2017. Priorities for research in soil ecology. Pedobiologia 63, 1–7.

Google Scholar 

Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution 17, 177–183.

Google Scholar 

Fleischmann, M., Hendra, P.J., McQuillan, A.J., 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163–166.

CAS  Google Scholar 

Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14, 563–575.

CAS  Google Scholar 

Fu, F., Shang, L., Zheng, F., Chen, Z., Wang, H., Wang, J., Gu, Z., Zhao, Y., 2016. Cells cultured on core-shell photonic crystal barcodes for drug screening. ACS Applied Materials & Interfaces 8, 13840–13848.

CAS  Google Scholar 

Fu, X., Zhang, Y., Xu, Q., Sun, X., Meng, F., 2021. Recent advances on sorting methods of high-throughput droplet-based microfluidics in enzyme directed evolution. Frontiers in Chemistry 9, 666867.

CAS  Google Scholar 

Giuffrida, M.C., Spoto, G., 2017. Integration of isothermal amplification methods in microfluidic devices: Recent advances. Biosensors & Bioelectronics 90, 174–186.

CAS  Google Scholar 

Gupta, S., Pathak, B., Fulekar, M.H., 2015. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Reviews in Environmental Science and Biotechnology 14, 241–269.

CAS  Google Scholar 

Hamamoto, H., Urai, M., Ishii, K., Yasukawa, J., Paudel, A., Murai, M., Kaji, T., Kuranaga, T., Hamase, K., Katsu, T., Su, J., Adachi, T., Uchida, R., Tomoda, H., Yamada, M., Souma, M., Kurihara, H., Inoue, M., Sekimizu, K., 2015. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nature Chemical Biology 11, 127–133.

CAS  Google Scholar 

Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery 14, 111–129.

CAS  Google Scholar 

Hattori, K., Sugiura, S., Kanamori, T., 2009. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab on a Chip 9, 1763–1772.

CAS  Google Scholar 

Hayden, R.T., Gu, Z., Ingersoll, J., Abdul-Ali, D., Shi, L., Pounds, S., Caliendo, A.M., 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. Journal of Clinical Microbiology 51, 540–546.

CAS  Google Scholar 

He, J., Mu, X., Guo, Z., Hao, H., Zhang, C., Zhao, Z., Wang, Q., 2014. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing. European Journal of Clinical Microbiology & Infectious Diseases 33, 2223–2230.

CAS  Google Scholar 

Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., Lear, G., 2020. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 79.

CAS  Google Scholar 

Hindson, B.J., Ness, K.D., Masquelier, D.A., Belgrader, P., Heredia, N. J., Makarewicz, A.J., Bright, I.J., Lucero, M.Y., Hiddessen, A.L., Legler, T.C., Kitano, T.K., Hodel, M.R., Petersen, J.F., Wyatt, P.W., Steenblock, E.R., Shah, P.H., Bousse, L.J., Troup, C.B., Mellen, J. C., Wittmann, D.K., Erndt, N.G., Cauley, T.H., Koehler, R.T., So, A. P., Dube, S., Rose, K.A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S.P., Romine, S., Milanovich, F.P., White, H.E., Regan, J.F., Karlin-Neumann, G.A., Hindson, C.M., Saxonov, S., Colston, B.W., 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry 83, 8604–8610.

CAS  Google Scholar 

Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., Wood, T.K., 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Communications 3, 613.

Google Scholar 

Huang, X., Li, Y., Liu, B., Guggenberger, G., Shibistova, O., Zhu, Z., Ge, T., Tan, W., Wu, J., 2017. SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. Soil Biology & Biochemistry 113, 71–79.

CAS  Google Scholar 

Huber, D., Voith von Voithenberg, L., Kaigala, G.V., 2018. Fluorescence in situ hybridization (FISH): history, limitations and what to expect from micro-scale FISH? Micro and Nano Engineering 1, 15–24.

Google Scholar 

Humphries, J., Xiong, L., Liu, J., Prindle, A., Yuan, F., Arjes, H.A., Tsimring, L., Süel, G.M., 2017. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209.e12.

CAS  Google Scholar 

Jokerst, J.C., Emory, J.M., Henry, C.S., 2012. Advances in micro-fluidics for environmental analysis. Analyst (London) 137, 24–34.

CAS  Google Scholar 

Kalsi, S., Sellars, S.L., Turner, C., Sutton, J.M., Morgan, H., 2017. A programmable digital microfluidic assay for the simultaneous detection of multiple anti-microbial resistance genes. Micromachines 8, 111.

Google Scholar 

Karimifard, S., Li, X., Elowsky, C., Li, Y., 2021. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel. Water Research 188, 116536.

CAS  Google Scholar 

Khemthongcharoen, N., Uawithya, P., Chanasakulniyom, M., Yasawong, M., Jeamsaksiri, W., Sripumkhai, W., Pattamang, P., Juntasaro, E., Houngkamhang, N., Thienthong, T., Promptmas, C., 2021. Polydimethylsiloxane (PDMS) microfluidic modifications for cell-based immunofluorescence assay. Journal of Adhesion Science and Technology 35, 955–972.

CAS  Google Scholar 

Kim, S.C., Cestellos-Blanco, S., Inoue, K., Zare, R.N., 2015. Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics (Basel, Switzerland) 4, 455–466.

Google Scholar 

Koo, J., Ko, J., Lim, H.B., Song, J.M., 2011. Surface modified microarray chip and laser induced fluorescence microscopy to detect DNA cleavage. Microchemical Journal 99, 523–529.

CAS  Google Scholar 

Krafft, B., Tycova, A., Urban, R.D., Dusny, C., Belder, D., 2021. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. Electrophoresis 42, 86–94.

CAS  Google Scholar 

Krell, T., Lacal, J., Reyes-Darias, J.A., Jimenez-Sanchez, C., Sungthong, R., Ortega-Calvo, J.J., 2013. Bioavailability of pollutants and chemotaxis. Current Opinion in Biotechnology 24, 451–456.

CAS  Google Scholar 

Lambert, B.S., Raina, J.B., Fernandez, V.I., Rinke, C., Siboni, N., Rubino, F., Hugenholtz, P., Tyson, G.W., Seymour, J.R., Stocker, R., 2017. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology 2, 1344–1349.

CAS  Google Scholar 

Lanning, L.M., Ford, R.M., Long, T., 2008. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Biotechnology and Bioengineering 100, 653–663.

CAS  Google Scholar 

Li, B., Qiu, Y., Zhang, J., Huang, X., Shi, H., Yin, H., 2018. Real-time study of rapid spread of antibiotic resistance plasmid in biofilm using microfluidics. Environmental Science & Technology 52, 11132–11141.

CAS 

留言 (0)

沒有登入
gif