Renal function-based versus standard dosing of pemetrexed: a randomized controlled trial

Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C et al (2018) Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(Suppl 4):192–237. https://doi.org/10.1093/annonc/mdy275

Article  Google Scholar 

Baas P, Fennell D, Kerr KM, Van Schil PE, Haas RL, Peters S et al (2015) Malignant pleural mesothelioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl 5):v31–v39. https://doi.org/10.1093/annonc/mdv199

Article  PubMed  Google Scholar 

Girard N, Ruffini E, Marx A, Faivre-Finn C, Peters S, Committee EG (2015) Thymic epithelial tumours: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl 5):v40-55. https://doi.org/10.1093/annonc/mdv277

Article  PubMed  Google Scholar 

European Medicine Agency (EMA). ALIMTA EPAR - Product Information. 2017. Available via: https://www.ema.europa.eu

de Rouw N, Boosman RJ, Huitema ADR, Hilbrands LB, Svensson EM, Derijks HJ et al (2021) Rethinking the application of pemetrexed for patients with renal impairment: a pharmacokinetic analysis. Clin Pharmacokinet. https://doi.org/10.1007/s40262-020-00972-1

Article  PubMed  PubMed Central  Google Scholar 

Mita AC, Sweeney CJ, Baker SD, Goetz A, Hammond LA, Patnaik A et al (2006) Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J Clin Oncol 24(4):552–562. https://doi.org/10.1200/JCO.2004.00.9720

Article  PubMed  CAS  Google Scholar 

Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD (2006) Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57(4):427–435. https://doi.org/10.1007/s00280-005-0035-2

Article  PubMed  Google Scholar 

Ando Y, Hayashi T, Ujita M, Murai S, Ohta H, Ito K et al (2016) Effect of renal function on pemetrexed-induced haematotoxicity. Cancer Chemother Pharmacol 78(1):183–189. https://doi.org/10.1007/s00280-016-3078-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen CY, Lin JW, Huang JW, Chen KY, Shih JY, Yu CJ et al (2015) Estimated creatinine clearance rate Is associated with the treatment effectiveness and toxicity of pemetrexed as continuation maintenance therapy for advanced nonsquamous non-small-cell lung cancer. Clin Lung Cancer 16(6):e131–e140. https://doi.org/10.1016/j.cllc.2015.01.001

Article  PubMed  CAS  Google Scholar 

Visser S, Koolen SLW, de Bruijn P, Belderbos HNA, Cornelissen R, Mathijssen RHJ et al (2019) Pemetrexed exposure predicts toxicity in advanced non-small-cell lung cancer: a prospective cohort study. Eur J Cancer 121:64–73. https://doi.org/10.1016/j.ejca.2019.08.012

Article  PubMed  CAS  Google Scholar 

Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41. https://doi.org/10.1159/000180580

Article  PubMed  CAS  Google Scholar 

Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ et al (1993) The European organization for research and treatment of cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85(5):365–376. https://doi.org/10.1093/jnci/85.5.365

Article  PubMed  CAS  Google Scholar 

Latz JE, Chaudhary A, Ghosh A, Johnson RD (2006) Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol 57(4):401–411. https://doi.org/10.1007/s00280-005-0036-1

Article  PubMed  Google Scholar 

de Rouw N, Visser S, Koolen SLW, Aerts J, van den Heuvel MM, Derijks HJ et al (2020) A limited sampling schedule to estimate individual pharmacokinetics of pemetrexed in patients with varying renal functions. Cancer Chemother Pharmacol 85(1):231–235. https://doi.org/10.1007/s00280-019-04006-x

Article  PubMed  CAS  Google Scholar 

van den Hombergh E, de Rouw N, van den Heuvel M, Croes S, Burger DM, Derijks J et al (2020) Simple and rapid quantification of the multi-enzyme targeting antifolate pemetrexed in human plasma. Ther Drug Monit 42(1):146–150. https://doi.org/10.1097/FTD.0000000000000672

Article  PubMed  CAS  Google Scholar 

R Core Team (2020). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Article  PubMed  PubMed Central  Google Scholar 

de Rouw N, de Boer M, Boosman RJ, van den Heuvel MM, Burger DM, Lieverse JE et al (2022) The pharmacoeconomic benefits of pemetrexed dose individualization in patients with lung cancer. Clin Pharmacol Ther 111(5):1103–1110. https://doi.org/10.1002/cpt.2529

Article  PubMed  PubMed Central  Google Scholar 

Kimura M, Naito T, Kenmotsu H, Taira T, Wakuda K, Oyakawa T et al (2015) Prognostic impact of cancer cachexia in patients with advanced non-small cell lung cancer. Support Care Cancer 23(6):1699–1708. https://doi.org/10.1007/s00520-014-2534-3

Article  PubMed  Google Scholar 

Zhu R, Liu Z, Jiao R, Zhang C, Yu Q, Han S et al (2019) Updates on the pathogenesis of advanced lung cancer-induced cachexia. Thorac Cancer 10(1):8–16. https://doi.org/10.1111/1759-7714.12910

Article  PubMed  Google Scholar 

Rinaldi DA, Burris HA, Dorr FA, Woodworth JR, Kuhn JG, Eckardt JR et al (1995) Initial phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol 13(11):2842–2850. https://doi.org/10.1200/jco.1995.13.11.2842

Article  PubMed  CAS  Google Scholar 

Rinaldi DA, Kuhn JG, Burris HA, Dorr FA, Rodriguez G, Eckhardt SG et al (1999) A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol 44(5):372–380. https://doi.org/10.1007/s002800050992

Article  PubMed  CAS  Google Scholar 

McDonald AC, Vasey PA, Adams L, Walling J, Woodworth JR, Abrahams T et al (1998) A phase I and pharmacokinetic study of LY231514, the multitargeted antifolate. Clin Cancer Res 4(3):605–610

PubMed  CAS  Google Scholar 

Boosman RJ, Dorlo TPC, de Rouw N, Burgers JA, Dingemans AC, van den Heuvel MM et al (2021) Toxicity of pemetrexed during renal impairment explained–implications for safe treatment. Int J Cancer. https://doi.org/10.1002/ijc.33721

Article  PubMed  Google Scholar 

Yang Y, Wang X, Tian J, Wang Z (2018) Renal function and plasma methotrexate concentrations predict toxicities in adults receiving high-dose methotrexate. Med Sci Monit 24:7719–7726. https://doi.org/10.12659/msm.912999

Article  PubMed  PubMed Central  CAS  Google Scholar 

Belani CP, Brodowicz T, Ciuleanu TE, Krzakowski M, Yang SH, Franke F et al (2012) Quality of life in patients with advanced non-small-cell lung cancer given maintenance treatment with pemetrexed versus placebo (H3E-MC-JMEN): results from a randomised, double-blind, phase 3 study. Lancet Oncol 13(3):292–299. https://doi.org/10.1016/S1470-2045(11)70339-4

Article  PubMed  CAS  Google Scholar 

Gridelli C, de Marinis F, Pujol JL, Reck M, Ramlau R, Parente B et al (2012) Safety, resource use, and quality of life in paramount: a phase III study of maintenance pemetrexed versus placebo after induction pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Thorac Oncol 7(11):1713–1721. https://doi.org/10.1097/JTO.0b013e318267cf84

Article  PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif