Biomarkers in Urolithiasis

Litwin M.S. Saigal C.S. Yano E.M. et al.

Urologic diseases in America Project: analytical methods and principal findings.

J Urol. 173: 933-937Fwu C.W. Eggers P.W. Kimmel P.L. et al.

Emergency department visits, use of imaging, and drugs for urolithiasis have increased in the United States.

Kidney Int. 83: 479-486

Physiopathology and etiology of stone formation in the kidney and the urinary tract.

Pediatr Nephrol. 25: 831-841WHO International Programme on Chemical Safety

Biomarkers and risk assessment: concepts and principles.

()Ichimura T. Bonventre J.V. Bailly V. et al.

Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury.

J Biol Chem. 273: 4135-4142Han W.K. Bailly V. Abichandani R. et al.

Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury.

Kidney Int. 62: 237-244Olvera-Posada D. Dayarathna T. Dion M. et al.

KIM-1 is a potential urinary biomarker of obstruction: results from a prospective cohort study.

J Endourol. 31: 111-118Xie Y. Xue W. Shao X. et al.

Analysis of a urinary biomarker panel for obstructive nephropathy and clinical outcomes.

PLoS One. 9: e112865Xue W. Xie Y. Wang Q. et al.

Diagnostic markers for acute kidney injury.

Nephrology. 19: 186-194Fahmy N. Sener A. Sabbisetti V. et al.

Urinary expression of novel tissue markers of kidney injury after ureteroscopy, shockwave lithotripsy, and in normal healthy controls.

J Endourol. 27: 1455-1462Urbschat A. Gauer S. Paulus P. et al.

Serum and urinary NGAL but not KIM-1 raises in human postrenal AKI.

Eur J Clin Invest. 44: 652-659Balasar M. Pişkin M.M. Topcu C. et al.

Urinary kidney injury molecule-1 levels in renal stone patients.

World J Urol. 34: 1311-1316Dieterle F. Sistare F. Goodsaid F. et al.

Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium.

Nat Biotechnol. 28: 455-462

Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury.

Nephrol Dial Transpl. 23: 3737-3743Bolgeri M. Whiting D. Reche A. et al.

Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker of renal injury in patients with ureteric stones: a pilot study.

J Clin Urol. 14: 21-28Hughes S.F. Jones N. Thomas-Wright S.J. et al.

Shock wave lithotripsy, for the treatment of kidney stones, results in changes to routine blood tests and novel biomarkers: a prospective clinical pilot-study.

Eur J Med Res. 25: 18Hughes S.F. Moyes A.J. Lamb R.M. et al.

The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients.

BMC Urol. 20: 122Dede O. Dağguli M. Utanğaç M. et al.

Urinary expression of acute kidney injury biomarkers in patients after RIRS: it is a prospective, controlled study.

Int J Clin Exp Med. 8: 8147-8152Zhu W. Liu M. Wang G.C. et al.

Urinary neutrophil gelatinase-associated lipocalin, a biomarker for systemic inflammatory response syndrome in patients with nephrolithiasis.

J Surg Res. 187: 237-243Amini E. Pishgar F. Hojjat A. et al.

The role of serum and urinary carbohydrate antigen 19-9 in predicting renal injury associated with ureteral stone.

Ren Fail. 38: 1626-1632Aybek H. Aybek Z. Sinik Z. et al.

Elevation of serum and urinary carbohydrate antigen 19-9 in benign hydronephrosis.

Int J Urol. 13: 1380-1384Wellwood J.M. Ellis B.G. Price R.G. et al.

Urinary N-acetyl- beta-D-glucosaminidase activities in patients with renal disease.

Br Med J. 3: 408-411Tenstad O. Roald A.B. Grubb A. et al.

Renal handling of radiolabelled human cystatin C in the rat.

Scand J Clin Lab Invest. 56: 409-414Hughes S.F. Cotter M.J. Evans S.A. et al.

Role of leucocytes in damage to the vascular endothelium during ischaemia-reperfusion injury.

Br J Biomed Sci. 63: 166-170van der Veen B.S. de Winther M.P. Heeringa P.

Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease.

Antioxid Redox Signal. 11: 2899-2937Chawla L.S. Seneff M.G. Nelson D.R. et al.

Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis.

Clin J Am Soc Nephrol. 2: 22-30Kwon O. Molitoris B.A. Pescovitz M. et al.

Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts.

Am J Kidney Dis. 41: 1074-1087Rao W.H. Evans G.S. Finn A.

The significance of interleukin 8 in urine.

Arch Dis Child. 85: 256-262Sabat R. Grütz G. Warszawska K. et al.

Biology of interleukin-10.

Cytokine Growth Factor Rev. 21: 331-344Rabinovich A. Medina L. Piura B. et al.

Expression of IL-10 in human normal and cancerous ovarian tissues and cells.

Eur Cytokine Netw. 21: 122-128Faust J. Menke J. Kriegsmann J. et al.

Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis.

Arthritis Rheum. 46: 3083-3095Parikh C.R. Mishra J. Thiessen-Philbrook H. et al.

Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery.

Kidney Int. 70: 199-203Chandrasekharan U.M. Siemionow M. Unsal M. et al.

Tumor necrosis factor alpha (TNF-alpha) receptor-II is required for TNF-alpha-induced leukocyte-endothelial interaction in vivo.

Blood. 109: 1938-1944Tawfick A. Matboli M. Shamloul S. et al.

Predictive urinary RNA biomarkers of kidney injury after extracorporeal shock wave lithotripsy.

World J Urol. 40: 1561-1567Pearle M.S. Goldfarb D.S. Assimos D.G. et al.

Medical management of kidney stones: AUA guideline.

J Urol. 192: 316-324Cilesiz N.C. Ozkan A. Kalkanli A. et al.

Can serum procalcitonin levels be useful in predicting spontaneous ureteral stone passage?.

BMC Urol. 20: 42Özcan C. Aydoğdu O. Senocak C. et al.

Predictive factors for spontaneous stone passage and the potential role of serum c-reactive protein in patients with 4 to 10 mm distal ureteral stones: a prospective clinical study.

J Urol. 194: 1009-1013Jain A. Sreenivasan S.K. Manikandan R. et al.

Association of spontaneous expulsion with C-reactive protein and other clinico-demographic factors in patients with lower ureteric stone.

Urolithiasis. 48: 117-122

Stone expulsion rate of small distal ureteric calculi could be predicted with plasma C-reactive protein.

Urolithiasis. 41: 235-239Ramasamy V. Aarthy P. Sharma V. et al.

Role of inflammatory markers and their trends in predicting the outcome of medical expulsive therapy for distal ureteric calculus.

Urol Ann. 14: 8-14Abou Heidar N. Labban M. Bustros G. et al.

Inflammatory serum markers predicting spontaneous ureteral stone passage.

Clin Exp Nephrol. 24: 277-283

Kidney stones may increase the risk of coronary heart disease and stroke: A PRISMA-Compliant meta-analysis.

Medicine (Baltimore). 96: e7898Liu Y. Li S. Zeng Z. et al.

Kidney stones and cardiovascular risk: a meta-analysis of cohort studies.

Am J Kidney Dis. 64: 402-410Cheungpasitporn W. Thongprayoon C. Mao M.A. et al.

The risk of coronary heart disease in patients with kidney stones: a systematic review and meta-analysis.

N Am J Med Sci. 6: 580-585Bargagli M. Moochhala S. Robertson W.G. et al.

Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease.

J Nephrol. 35: 851-857

Relationship between C-reactive protein and kidney stone prevalence.

J Urol. 191: 372-375Qin Z. Zhao J. Geng J. et al.

Higher Triglyceride-Glucose Index Is Associated With Increased Likelihood of Kidney Stones.

Front Endocrinol (Lausanne). 12: 774567Okada A. Nomura S. Saeki Y. et al.

Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney.

J Bone Miner Res. 23: 1629-1637Siener R. Glatz S. Nicolay C. et al.

The role of overweight and obesity in calcium oxalate stone formation.

Obes Res. 12: 106-113Mansour A. Aboeerad M. Qorbani M. et al.

Association between low bone mass and the serum RANKL and OPG in patients with nephrolithiasis.

BMC Nephrol. 19: 172Icer M.A. Gezmen-Karadag M. Sozen S.

Can urine osteopontin levels, which may be correlated with nutrition intake and body composition, be used as a new biomarker in the diagnosis of nephrolithiasis?.

Clin Biochem. 60: 38-43

Prevalence, pathophysiological mechanisms and factors affecting urolithiasis.

Int Urol Nephrol. 50: 799-806Price P.A. Urist M.R. Otawara Y.

Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone.

Biochem Biophys Res Commun. 117: 765-771Luo G. Ducy P. McKee M.D. et al.

Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein.

Nature. 386: 78-81Castiglione V. Pottel H. Lieske J.C. et al.

Evaluation of inactive Matrix-Gla-Protein (MGP) as a biomarker for incident and recurrent kidney stones.

J Nephrol. 33: 101-107Goldberg H. Grass L. Vogl R. et al.

Urine citrate and renal stone disease.

CMAJ. 141: 217-221

Tamm-Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies.

J Urol. 127: 177-179Noonin C. Peerapen P. Yoodee S. et al.

Systematic analysis of modulating activities of native human urinary Tamm-Horsfall protein on calcium oxalate crystallization, growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix.

Chem Biol Interact. 357: 109879

Tamm-Horsfall glycoprotein--inhibitor or promoter of calcium oxalate monohydrate crystallization processes?.

Urol Res. 20: 83-86Doyle I.R. Ryall R.L. Marshall V.R.

Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon.

Clin Chem. 37: 1589-1594Webber D. Rodgers A. Sturrock E.

Synergism between Urinary Prothrombin Fragment 1 and Urine: a comparison of inhibitory activities in stone-prone and stone-free population groups.

Clin Chem Lab Med. 40: 930-936Kovacevic L. Lu H. Kovacevic N. et al.

Cystatin C, Neutrophil gelatinase-associated lipocalin, and lysozyme C: urinary biomarkers for detection of early kidney dysfunction in children with urolithiasis.

Urology. 143: 221-226Fan X. Ye W. Ma J. et al.

Metabolic differences between unilateral and bilateral renal stones and their association with markers of kidney injury.

J Urol. 207: 144-151Cadieux P.A. Beiko D.T. Watterson J.D. et al.

Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS): a new proteomic urinary test for patients with urolithiasis.

J Clin Lab Anal. 18: 170-175Zhu W. Liu M. Wang G.C. et al.

Fibrinogen alpha chain precursor and apolipoprotein A-I in urine as biomarkers for noninvasive diagnosis of calcium oxalate nephrolithiasis: a proteomics study.

Biomed Res Int. 2014: 415651Wang X. Wang M. Ruan J. et al.

Identification of urine biomarkers for calcium-oxalate urolithiasis in adults based on UPLC-Q-TOF/MS.

J Chromatogr B Analyt Technol Biomed Life Sci. 1124: 290-297Duan X. Zhang T. Ou L. et al.

1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients.

Urolithiasis. 48: 27-35Primiano A. Persichilli S. Ferraro P.M. et al.

A specific urinary amino acid profile characterizes people with kidney stones.

Dis Markers. 2020: 1-7Khan S.R. Pearle M.S. Robertson W.G. et al.

Kidney stones.

Nat Rev Dis Primers. 2: 16008

Institute for Single Crystals, STC “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine. Crystallization kinetics of calcium oxalate monohydrate in he presence of amino acids.

FunctMater. 25: 381-385Taranets Y.V. Bezkrovnaya O.N. Pritula I.M. et al.

L-threonine amino acid as a promoter of the growth of pathogenic calcium oxalate monohydrate crystals.

J Nanomater Mol Nanotechnol. 6https://doi.org/10.4172/2324-8777.1000229Gao S. Yang R. Peng Z. et al.

Metabolomics analysis for hydroxy-L-proline-induced calcium oxalate nephrolithiasis in rats based on ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry.

Sci Rep. 6: 30142Wen J. Cao Y. Li Y. et al.

Metabolomics analysis of the serum from children with urolithiasis using UPLC-MS.

Clin Transl Sci. 14: 1327-1337Michel M.S. Trojan L. Rassweiler J.J.

Complications in percutaneous nephrolithotomy.

Eur Urol. 51: 899-906de Martino M. Pantuck A.J. Hofbauer S. et al.

Prognostic impact of preoperative neutrophil-to-lymphocyte ratio in localized nonclear cell renal cell carcinoma.

J Urol. 190: 1999-2004Kriplani A. Pandit S. Chawla A. et al.

Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) in predicting systemic inflammatory response syndrome (SIRS) and sepsis after percutaneous nephrolithotomy (PNL).

Urolithiasis. 50: 341-348Qi T. Lai C. Li Y. et al.

The predictive and diagnostic ability of IL-6 for postoperative urosepsis in patients undergoing percutaneous nephrolithotomy.

Urolithiasis. 49: 367-375Zheng J. Li Q. Fu W. et al.

Procalcitonin as an early diagnostic and monitoring tool in urosepsis following percutaneous nephrolithotomy.

Urolithiasis. 43: 41-47Liu M. Zhu Z. Cui Y. et al.

The value of procalcitonin for predicting urosepsis after mini-percutaneous nephrolithotomy or flexible ureteroscopy based on different organisms.

World J Urol. 40: 529-535Luo X. Yang X. Li J. et al.

The procalcitonin/albumin ratio as an early diagnostic predictor in discriminating urosepsis from patients with febrile urinary tract infection.

Medicine (Baltimore). 97: e11078Qiao Y. Liu G. Zhou W. et al.

The rs13347 Polymorphism of the CD44 Gene Is Associated with the Risk of Kidney Stones Disease in the Chinese Han Population of Northeast Sichuan, China.

Comput Math Methods Med. 2022: 6Jabalameli M.R. Fitzpatrick F.M. Colombo R. et al.

Exome sequencing identifies a disease variant of the mitochondrial ATP-Mg/Pi carrier SLC25A25 in two families with kidney stones.

Mol Genet Genomic Med. 9: e1749Liu C.C. Wu C.F. Lee Y.C. et al.

Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients.

Antioxidants (Basel). 11: 152Mehdi W.A. Mehde A.A. Raus R.A. et al.

Genetic polymorphisms of human transcription factor-7 like 2 (TCF7L2), β-defensin (DEFB1) and CD14 genes in nephrolithiasis patients.

Int J Biol Macromol. 118: 610-616Liang X. Lai Y. Wu W. et al.

LncRNA-miRNA-mRNA expression variation profile in the urine of calcium oxalate stone patients.

BMC Med Genomics. 12: 57Halbritter J. Baum M. Hynes A.M. et al.

Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis.

J Am Soc Nephrol. 26: 543-551Siva S. Barrack E.R. Reddy G.P. et al.

A critical analysis of the role of gut Oxalobacter formigenes in oxalate stone disease.

BJU Int. 103: 18-21Kaufman D.W. Kelly J.P. Curhan G.C. et al.

Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones.

J Am Soc Nephrol. 19: 1197-1203Kumar R. Mukherjee M. Bhandari M. et al.

Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India.

Eur Urol. 41: 318-322

Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease.

Adv Appl Microbiol. 72: 63-87

The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut.

Pathogens. 2: 636-652Tavasoli S. Alebouyeh M. Naji M. et al.

Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study.

BJU Int. 125: 133-143Ticinesi A. Milani C. Guerra A. et al.

Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers.

Gut. 67: 2097-2106Jiang S. Xie S. Lv D. et al.

Alteration of the gut microbiota in Chinese population with chronic kidney disease.

Sci Rep. 7: 2870Tang R. Jiang Y. Tan A. et al.

16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones.

Urolithiasis. 46: 503-514Chen F. Bao X. Liu S. et al.

Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption.

Appl Microbiol Biotechnol. 105: 789-802Cao C. Fan B. Zhu J. et al.

Association of gut microbiota and biochemical features in a chinese population with renal uric acid stone.

Front Pharmacol. 13: 888883

留言 (0)

沒有登入
gif