Tumor microenvironment-associated lactate metabolism regulates the prognosis and precise checkpoint immunotherapy outcomes of patients with lung adenocarcinoma

Bui T, Thompson C. Cancer’s sweet tooth. Cancer Cell. 2006;9(6):419–20.

Article  PubMed  Google Scholar 

Fantin V, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.

Article  PubMed  Google Scholar 

Dey P, Kimmelman A, DePinho R. Metabolic codependencies in the tumor microenvironment. Cancer Discov. 2021;11(5):1067–81.

Article  PubMed  PubMed Central  Google Scholar 

Raggi C, Taddei M, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol. 2022;77(3):849–64.

Article  PubMed  Google Scholar 

Wang C, Dong Z, Hao Y, et al. Coordination polymer-coated CaCO reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv Mater. 2022;34(3): e2106520.

Article  PubMed  Google Scholar 

Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: a century with Otto Warburg. Semin Cancer Biol. 2022;86:325–33.

Article  PubMed  Google Scholar 

Icard P, Shulman S, Farhat D, Steyaert J, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updates. 2018;38:1–11.

Article  Google Scholar 

Poff A, Koutnik A, Egan K, Sahebjam S, D’Agostino D, Kumar N. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol. 2019;56:135–48.

Article  PubMed  Google Scholar 

Faubert B, Li K, Cai L, et al. Lactate metabolism in human lung tumors. Cell. 2017;171(2):358-71.e9.

Article  PubMed  PubMed Central  Google Scholar 

Cao L, Wu J, Qu X, et al. Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39(1):267.

Article  PubMed  PubMed Central  Google Scholar 

Reinfeld B, Rathmell W, Kim T, Rathmell J. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol. 2022;19(1):46–58.

Article  PubMed  Google Scholar 

Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 2018;53(6):667–82.

Article  PubMed  Google Scholar 

Brooks G. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.

Article  PubMed  Google Scholar 

Becker L, O’Connell J, Vo A, et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 2020;31(9): 107701.

Article  PubMed  PubMed Central  Google Scholar 

Lee S, McIntyre D, Honess D, et al. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer. 2018;119(5):622–30.

Article  PubMed  PubMed Central  Google Scholar 

Colegio O, Chu N, Szabo A, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513(7519):559–63.

Article  PubMed  PubMed Central  Google Scholar 

Gao F, Tang Y, Liu W, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31(51):e1904639.

Article  PubMed  Google Scholar 

Hui S, Ghergurovich J, Morscher R, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–8.

Article  PubMed  PubMed Central  Google Scholar 

Watson M, Vignali P, Mullett S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.

Article  PubMed  PubMed Central  Google Scholar 

Doherty J, Cleveland J. Targeting lactate metabolism for cancer therapeutics. J Clin Investig. 2013;123(9):3685–92.

Article  PubMed  PubMed Central  Google Scholar 

Baumann F, Leukel P, Doerfelt A, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 2009;11(4):368–80.

Article  PubMed  PubMed Central  Google Scholar 

Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201-18.e9.

Article  PubMed  Google Scholar 

Multhoff G, Vaupel P. Lactate-avid regulatory T cells: metabolic plasticity controls immunosuppression in tumour microenvironment. Signal Transduct Target Ther. 2021;6(1):171.

Article  PubMed  PubMed Central  Google Scholar 

Decking S, Bruss C, Babl N, et al. LDHB overexpression can partially overcome T cell inhibition by lactic acid. Int J Mol Sci. 2022;23(11):5970.

Article  PubMed  PubMed Central  Google Scholar 

Mendler A, Hu B, Prinz P, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer. 2012;131(3):633–40.

Article  PubMed  Google Scholar 

Brand A, Singer K, Koehl G, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.

Article  PubMed  Google Scholar 

Scott K, Cleveland J. Lactate wreaks havoc on tumor-infiltrating T and NK cells. Cell Metab. 2016;24(5):649–50.

Article  PubMed  Google Scholar 

Zhou H, Yan X-Y, Yu W, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022;41(1):4–18.

Article  PubMed  Google Scholar 

Zhang L, Li S. Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 2020;388(2): 111846.

Article  PubMed  Google Scholar 

Song J, Lee K, Park S, et al. Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization. Invest Ophthalmol Vis Sci. 2018;59(8):3747–54.

Article  PubMed  Google Scholar 

Alber J, Föller M. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells. Mol Cell Biochem. 2022;477(2):363–70.

Article  PubMed  Google Scholar 

Brown T, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 2020;206: 107451.

Article  PubMed  Google Scholar 

Gao Y, Zhou H, Liu G, Wu J, Yuan Y, Shang A. Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022;2022:3119375.

Article  PubMed  PubMed Central  Google Scholar 

Chang J, Lee Y, Huang R. The impact of the Cancer Genome Atlas on lung cancer. Transl Res. 2015;166(6):568–85.

Article  PubMed  PubMed Central  Google Scholar 

Wilkerson MD, Yin X, Walter V, et al. Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS ONE. 2012;7(5):e36530.

Article  PubMed  PubMed Central  Google Scholar 

Tibshirani R, Bien J, Friedman J, et al. Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Ser B Stat Methodol. 2012;74(2):245–66.

Article  Google Scholar 

McEligot A, Poynor V, Sharma R, Panangadan A. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients. 2020;12(9):2652.

Article  PubMed Central  Google Scholar 

Limagne E, Nuttin L, Thibaudin M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40(2):136-52.e12.

Article  PubMed  Google Scholar 

Jung H, Kim HS, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. 2019;10(1):4278.

Article  PubMed  PubMed Central  Google Scholar 

Hwang S, Kwon AY, Jeong JY, et al. Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. 2020;10(1):643.

Article  PubMed  PubMed Central  Google Scholar 

Goldmann T, Marwitz S, Nitschkowski D, et al. PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung. Cancer Immunol Immunother. 2021;70(9):2577–87.

Article  PubMed 

留言 (0)

沒有登入
gif