PD-1-CD28 fusion protein strengthens mesothelin-specific TRuC T cells in preclinical solid tumor models

S. Lesch et al., Determinants of response and resistance to CAR T cell therapy. Semin. Cancer Biol. 65, 80–90 (2020)

Article  CAS  PubMed  Google Scholar 

L.J. Nastoupil et al., Standard-of-Care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J. Clin. Oncol. 38(27), 3119–3128 (2020)

Article  PubMed  PubMed Central  Google Scholar 

S. Lesch, S. Gill, The promise and perils of immunotherapy. Blood Adv. 5(18), 3709–3725 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

R.C. Sterner, R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11(4), 69 (2021)

Article  PubMed  PubMed Central  Google Scholar 

J. Tchou et al., Safety and efficacy of intratumoral injections of Chimeric Antigen Receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5(12), 1152–1161 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Hegde et al., Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Invest. 126(8), 3036–3052 (2016)

Article  PubMed  PubMed Central  Google Scholar 

S. Wilkie et al., Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32(5), 1059–1070 (2012)

Article  CAS  PubMed  Google Scholar 

E.K. Moon et al., Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20(16), 4262–4273 (2014)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Adachi et al., IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36(4), 346–351 (2018)

Article  CAS  PubMed  Google Scholar 

O.O. Yeku et al., Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7(1), 10541 (2017)

Article  PubMed  PubMed Central  Google Scholar 

B.L. Cadilha et al., Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci. Adv. 7(24), eabi5781 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Lesch et al., T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng. 5(11), 1246–1260 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

E.K. Moon et al., Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17(14), 4719–4730 (2011)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Stoiber et al., Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 8(5), 472 (2019)

Article  CAS  PubMed Central  Google Scholar 

M.-R. Benmebarek et al., A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 35(8), 2243–2257 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P.A. Baeuerle et al., Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10(1), 2087 (2019)

Article  PubMed  PubMed Central  Google Scholar 

N. Frey, D. Porter, Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol. Blood Marrow Transplant. 25(4), e123–e127 (2019)

Article  CAS  PubMed  Google Scholar 

L.S. Maggie, David S. Dr, Hong: we are learning every day about cellular therapies. Evid.-Based Oncol. 27(7), SP286–SP287 (2021)

Google Scholar 

C. Blank et al., PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Can. Res. 64(3), 1140 (2004)

Article  CAS  Google Scholar 

R.V. Parry et al., CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25(21), 9543–9553 (2005)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K.M. Hargadon, C.E. Johnson, C.J. Williams, Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018)

Article  CAS  PubMed  Google Scholar 

Z. Wang et al., Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell. Mol. Immunol. 18(9), 2188–2198 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Cherkassky et al., Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Investig. 126(8), 3130–3144 (2016)

Article  PubMed  PubMed Central  Google Scholar 

S. Kobold et al., Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J. Natl. Cancer Inst. 107(8), djv146 (2015)

Article  PubMed  PubMed Central  Google Scholar 

X. Liu et al., A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Can. Res. 76(6), 1578–1590 (2016)

Article  CAS  Google Scholar 

S. Rafiq et al., Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36(9), 847–856 (2018)

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Rataj et al., PD1-CD28 fusion protein enables CD4+ T cell help for adoptive T cell therapy in models of pancreatic cancer and non-hodgkin lymphoma. Front. Immunol. 9, 1955 (2018)

Article  PubMed  PubMed Central  Google Scholar 

F. Blaeschke et al., Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer J. 11(6), 108 (2021)

Article  PubMed  PubMed Central  Google Scholar 

K. Ghani et al., Efficient human hematopoietic cell transduction using RD114- and GALV-pseudotyped retroviral vectors produced in suspension and serum-free media. Hum. Gene Ther. 20(9), 966–974 (2009)

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Shi et al., The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6(1), 74 (2013)

Article  PubMed  PubMed Central  Google Scholar 

E.A. Chong et al., PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129(8), 1039–1041 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

W. Hu et al., CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol. Immunother. 68(3), 365–377 (2019)

Article  CAS  PubMed  Google Scholar 

S. Li et al., Enhanced cancer immunotherapy by chimeric antigen receptor-modified T Cells engineered to secrete checkpoint inhibitors. Clin. Cancer Res. 23(22), 6982 (2017)

Article  CAS  PubMed  Google Scholar 

A.M. Li et al., Checkpoint inhibitors augment CD19-directed Chimeric Antigen Receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia. Blood 132, 556 (2018)

Article  Google Scholar 

P.S. Adusumilli et al., A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11(11), 2748–2763 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Berner et al., Association of checkpoint inhibitor–induced toxic effects with shared cancer and tissue antigens in non–small cell lung cancer. JAMA Oncol. 5(7), 1043–1047 (2019)

Article  PubMed  Google Scholar 

S.K. Subudhi et al., Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl. Acad. Sci. 113(42), 11919–11924 (2016)

Article  CAS  PubMed 

留言 (0)

沒有登入
gif