Molecular mechanisms of antibiotic resistance revisited

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

Article  CAS  PubMed  Google Scholar 

Whittle, E. E. et al. Efflux impacts intracellular accumulation only in actively growing bacterial cells. mBio 12, e0260821 (2021).

Article  PubMed  Google Scholar 

Alav, I. et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem. Rev. 121, 5479–5596 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klenotic, P. A., Morgan, C. E. & Yu, E. W. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Fac. Rev. 10, 24 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malaka De Silva, P. et al. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc. Biol. Sci. 289, 20220581 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Newbury, A. et al. Fitness effects of plasmids shape the structure of bacteria-plasmid interaction networks. Proc. Natl Acad. Sci. USA 119, e2118361119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrilero, L. et al. Positive selection inhibits plasmid coexistence in bacterial genomes. mBio 12, e00558-21 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Cummins, E. A., Snaith, A. E., McNally, A. & Hall, R. J. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur. J. Clin. Microbiol. Infect. Dis. https://doi.org/10.1007/S10096-021-04359-3 (2021).

Article  PubMed  Google Scholar 

Gomez-Simmonds, A. & Uhlemann, A. C. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J. Infect. Dis. 215, S18–S27 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, N. N. et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS ONE 7, e43958 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Draper, P. The outer parts of the mycobacterial envelope as permeability barriers. Front. Biosci. 3, D1253-61 (1998).

Article  PubMed  Google Scholar 

Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández, L. & Hancock, R. E. W. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362, 933–942 (2006).

Article  PubMed  Google Scholar 

Acosta-Gutiérrez, S. et al. Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4, 1487–1498 (2018).

Article  PubMed  Google Scholar 

Wong, J. L. C. et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat. Commun. 10, 3957 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lou, H. et al. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS ONE 6, e25825 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pratt, L. A., Hsing, W., Gibson, K. E. & Silhavy, T. J. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol. Microbiol. 20, 911–917 (1996).

Article  CAS  PubMed  Google Scholar 

Adler, M., Anjum, M., Andersson, D. I. & Sandegren, L. Influence of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J. Antimicrob. Chemother. 68, 51–59 (2013).

Article  CAS  PubMed  Google Scholar 

Andersen, J. & Delihas, N. micF RNA binds to the 5’ end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 29, 9249–9256 (1990).

Article  CAS  PubMed  Google Scholar 

Delihas, N. & Forst, S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J. Mol. Biol. 313, 1–12 (2001).

Article  CAS  PubMed  Google Scholar 

Chen, S., Zhang, A., Blyn, L. B. & Storz, G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186, 6689–6697 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dam, S., Pagès, J.-M. & Masi, M. Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics 6, 33 (2017).

Article  PubMed Central  Google Scholar 

Eren, E. et al. Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol. 10, e1001242 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zgurskaya, H. I. & Rybenkov, V. V. Permeability barriers of Gram-negative pathogens. Ann. NY Acad. Sci. 1459, 5–18 (2020).

Article  PubMed  Google Scholar 

Chevalier, S. et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev. 41, 698–722 (2017).

Article  CAS  PubMed  Google Scholar 

Ude, J. et al. Outer membrane permeability: antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 118, e2107644118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nazarov, P. A. MDR pumps as crossroads of resistance: antibiotics and bacteriophages. Antibiotics 11, 734 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsutsumi, K. et al. Structures of the wild-type MexAB–OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat. Commun. 10, 1520 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

Article  CAS  PubMed  Google Scholar 

Ebbensgaard, A. E., Løbner-Olesen, A. & Frimodt-Møller, J. The role of efflux pumps in the transition from low-level to clinical antibiotic resistance. Antibiotics 9, 855 (2020).

Article  CAS  PubMed Central  Google Scholar 

Morgan, C. E. et al. Cryoelectron microscopy structures of AdeB illuminate mechanisms of simultaneous binding and exporting of substrates. mBio 12, e03690-20 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Chen, M. et al. In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure https://doi.org/10.1016/J.STR.2021.08.008 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wang, Z. et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 6, e24905 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Tikhonova, E. B., Yamada, Y. & Zgurskaya, H. I. Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem. Biol. 18, 454–463 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

López, C. A., Travers, T., Pos, K. M., Zgurskaya, H. I. & Gnanakaran, S. Dynamics of intact MexAB-OprM efflux pump: focusing on the MexA-OprM interface. Sci. Rep. 7, 16521 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Du, D. et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 509, 512–515 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif