Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria

Miyakawa, T., Matsuzawa, H., Matsuhashi, M. & Sugino, Y. Cell wall peptidoglycan mutants of Escherichia coli K-12: existence of two clusters of genes, mra and mrb, for cell wall peptidoglycan biosynthesis. J. Bacteriol. 112, 950–958 (1972).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayala, J. A., Garrido, T., De Pedro, M. A. & Vicente, M. Molecular biology of bacterial septation. New Compr. Biochem. 27, 73–101 (1994).

Article  CAS  Google Scholar 

Francis, F., Ramirez-Arcos, S., Salimnia, H., Victor, C. & Dillon, J. A. R. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 251, 141–151 (2000).

Article  CAS  PubMed  Google Scholar 

Real, G. & Henriques, A. O. Localization of the Bacillus subtilis murB gene within the dcw cluster is important for growth and sporulation. J. Bacteriol. 188, 1721–1732 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).

Article  CAS  PubMed  Google Scholar 

Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

Article  CAS  PubMed  Google Scholar 

Sham, L.-T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuzawa, H. et al. Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J. Bacteriol. 171, 558–560 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pende, N. et al. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat. Commun. 12, 3214 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boes, A., Olatunji, S., Breukink, E. & Terrak, M. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10, e01912–e01918 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mingorance, J. & Tamames, J. in Molecules in Time and Space (eds Vicente, M., et al.) Ch. 13 (Springer, 2004).

Nikolaichik, Y. A. & Donachie, W. D. Conservation of gene order amongst cell wall and cell division genes in Eubacteria, and ribosomal genes in Eubacteria and Eukaryotic organelles. Genetica 108, 1–7 (2000).

Article  CAS  PubMed  Google Scholar 

Vicente, M., Gomez, M. J. & Ayala, J. A. Regulation of transcription of cell division genes in the Eschericia coli dcw cluster. Cell. Mol. Life Sci. 54, 317–324 (1998).

Article  CAS  PubMed  Google Scholar 

Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994).

Article  CAS  PubMed  Google Scholar 

Real, G., Autret, S., Harry, E. J., Errington, J. & Henriques, A. O. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol. Microbiol. 55, 349–367 (2005).

Article  CAS  PubMed  Google Scholar 

Tamames, J., González-Moreno, M., Mingorance, J., Valencia, A. & Vicente, M. Bringing gene order into bacterial shape. Trends Genet. 17, 124–126 (2001).

Article  CAS  PubMed  Google Scholar 

Mingorance, J., Tamames, J. & Vicente, M. Genomic channeling in bacterial cell division. J. Mol. Recognit. 17, 481–487 (2004).

Article  CAS  PubMed  Google Scholar 

Megrian, D., Taib, N., Jaffe, A., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall (dcw) gene cluster across Bacteria. Mendeley Data https://doi.org/10.17632/4y5mzppzmb.1 (2022).

Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).

Article  CAS  PubMed  Google Scholar 

Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).

Article  PubMed  Google Scholar 

Mamou, G. et al. Peptidoglycan maturation controls outer membrane protein assembly. Nature https://doi.org/10.1038/s41586-022-04834-7 (2022).

Rohs, P. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 315–336 (2021).

Article  PubMed  Google Scholar 

Antunes, A. et al. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J. Bacteriol. 190, 3580–3587 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 144, 324–333 (1986).

Article  CAS  Google Scholar 

Pilhofer, M. et al. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190, 3192–3202 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeske, O. et al. Planctomycetes do possess a peptidoglycan cell wall. Nat. Commun. 6, 7116 (2015).

Article  CAS  PubMed  Google Scholar 

Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014).

Article  CAS  PubMed  Google Scholar 

Pilhofer, M. et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4, 1–7 (2013).

Article  Google Scholar 

Van Teeseling, M. C. F. et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6, 1–6 (2015).

Article  Google Scholar 

Rivas-Marín, E. & Devos, D. P. The paradigms they are a-changin’: past, present and future of PVC bacteria research. A. Van Leeuw. 111, 785–799 (2018).

Article  Google Scholar 

Rivas-Marín, E., Canosa, I. & Devos, D. P. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Planctomycetesverrucomicrobia-Chlamydiae superphylum. Front. Microbiol. 7, 1–11 (2016).

Article  Google Scholar 

Hoiczyk, E. & Hansel, A. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182, 1191–1199 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber, R. et al. Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15, 340–351 (1992).

Article  Google Scholar 

L’Haridon, S. et al. Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48, 701–711 (1998).

Article  PubMed  Google Scholar 

Stohr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int. J. Syst. Evol. Microbiol. 51, 1853–1862 (2001).

Article  CAS  PubMed  Google Scholar 

Liu, Y., Hidaka, E., Kaneko, Y., Akamatsu, T. & Ota, H. Ultrastructure of Helicobacter pylori in human gastric mucosa and H. pylori-infected human gastric mucosa using transmission electron microscopy and the high-pressure freezing-freeze substitution technique. J. Gastroenterol. 41, 569–574 (2006).

Article  PubMed  Google Scholar 

Müller, A. et al. Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen 3, 702–710 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Porcelli, I., Reuter, M., Pearson, B. M., Wilhelm, T. & van Vliet, A. H. M. Parallel evolution of genome structure and transÿcriptional landscape in the Epsilonproteobacteria. BMC Genom. 14, 616 (2013).

Article  CAS  Google Scholar 

Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

Article  CAS 

留言 (0)

沒有登入
gif