Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band

Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 84, 0457–0484 (1927).

Article  CAS  Google Scholar 

Tully, J. C. Perspective on ‘Zur Quantentheorie der Molekeln’’ - Born M, Oppenheimer R (1927) Ann Phys 84: 457. Theor. Chem. Acc. 103, 173–176 (2000).

Article  CAS  Google Scholar 

Bünermann, O., Kandratsenka, A. & Wodtke, A. M. Inelastic scattering of H atoms from surfaces. J. Phys. Chem. A 125, 3059–3076 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hertl, N., Kandratsenka, A., Bünermann, O. & Wodtke, A. M. Multibounce and subsurface scattering of H atoms colliding with a van der Waals solid. J. Phys. Chem. A 125, 5745–5752 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, H. Y. et al. Imaging covalent bond formation by H atom scattering from graphene. Science 364, 379–382 (2019).

Article  CAS  PubMed  Google Scholar 

Jiang, H. Y. et al. Small nuclear quantum effects in scattering of H and D from graphene. J. Phys. Chem. Lett. 12, 1991–1996 (2021).

Article  CAS  PubMed  Google Scholar 

Wille, S. et al. An experimentally validated neural-network potential energy surface for H-atom on free-standing graphene in full dimensionality. Phys. Chem. Chem. Phys. 22, 26113–26120 (2020).

Article  CAS  PubMed  Google Scholar 

Tully, J. C. Chemical dynamics at metal surfaces. Annu. Rev. Phys. Chem. 51, 153–178 (2000).

Article  CAS  PubMed  Google Scholar 

Wodtke, A. M., Tully, J. C. & Auerbach, D. J. Electronically non-adiabatic interactions of molecules at metal surfaces: Can we trust the Born–Oppenheimer approximation for surface chemistry? Int. Rev. Phys. Chem. 23, 513–539 (2004).

Article  CAS  Google Scholar 

Bünermann, O. et al. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science 350, 1346–1349 (2015).

Article  PubMed  Google Scholar 

Jiang, H. Y., Dorenkamp, Y., Krüger, K. & Bünermann, O. Inelastic H and D atom scattering from Au(111) as benchmark for theory. J. Chem. Phys. 150, 184105 (2019).

Article  Google Scholar 

Kandratsenka, A. et al. Unified description of H-atom-induced chemicurrents and inelastic scattering. Proc. Natl Acad. Sci. USA 115, 680–684 (2018).

Dorenkamp, Y. et al. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption. J. Chem. Phys. 148, 034706 (2018).

Article  PubMed  Google Scholar 

Amirav, A. & Cardillo, M. J. Electron-hole pair creation by atomic scattering at surfaces. Phys. Rev. Lett. 57, 2299–2302 (1986).

Article  CAS  PubMed  Google Scholar 

Amirav, A. et al. Electron-hole pair creation at a Ge(100) surface by ground-state neutral Xe atoms. J. Appl. Phys. 59, 2213–2215 (1986).

Weiss, P. S., Amirav, A., Trevor, P. L. & Cardillo, M. J. Hyperthermal gas–surface scattering. J. Vac. Sci. Technol. A 6, 889–894 (1988).

Article  CAS  Google Scholar 

Chadi, D. J. & Chiang, C. New c – 2 × 8 unit cell for the Ge(111) surface. Phys. Rev. B 23, 1843–1846 (1981).

Article  CAS  Google Scholar 

Feenstra, R. M., Lee, J. Y., Kang, M. H., Meyer, G. & Rieder, K. H. Band gap of the Ge(111)c(2 × 8) surface by scanning tunneling spectroscopy. Phys. Rev. B 73, 035310 (2006).

Article  Google Scholar 

Head-Gordon, M. & Tully, J. C. Molecular dynamics with electronic frictions. J. Chem. Phys. 103, 10137–10145 (1995).

Article  CAS  Google Scholar 

Juaristi, J. I., Alducin, M., Muino, R. D., Busnengo, H. F. & Salin, A. Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Phys. Rev. Lett. 100, 116102 (2008).

Article  CAS  PubMed  Google Scholar 

Bünermann, O., Jiang, H. Y., Dorenkamp, Y., Auerbach, D. J. & Wodtke, A. M. An ultrahigh vacuum apparatus for H atom scattering from surfaces. Rev. Sci. Instrum. 89, 094101 (2018).

Article  PubMed  Google Scholar 

Schnieder, L., Seekamprahn, K., Liedeker, F., Steuwe, H. & Welge, K. H. Hydrogen-exchange reaction H + D2 in crossed beams. Faraday Discuss. 91, 259–269 (1991).

Article  CAS  Google Scholar 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Article  Google Scholar 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Article  CAS  Google Scholar 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article  CAS  PubMed  Google Scholar 

Zhang, Y. L., Hu, C. & Jiang, B. Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation. J. Phys. Chem. Lett. 10, 4962–4967 (2019).

Hase, W. L. et al. VENUS96: A general chemical dynamics computer program. QCPE Bulletin 16, 671 (1996).

Li, Y. G. & Wahnström, G. Nonadiabatic effects in hydrogen diffusion in metals. Phys. Rev. Lett. 68, 3444–3447 (1992).

Article  CAS  PubMed  Google Scholar 

Puska, M. J. & Nieminen, R. M. Atoms embedded in an electron gas: Phase shifts and cross sections. Phys. Rev. B 27, 6121–6128 (1983).

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif