Endothelial Rap1B mediates T-cell exclusion to promote tumor growth: a novel mechanism underlying vascular immunosuppression

Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacker SA, Fox SB (2016) The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol. https://doi.org/10.3389/fimmu.2016.00621

Article  PubMed  PubMed Central  Google Scholar 

Fridman WH, PagèsSaut̀s-Fridman FC, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. https://doi.org/10.1038/nrc3245

Article  CAS  PubMed  Google Scholar 

Ager A, Watson HA, Wehenkel SC, Mohammed RN (2016) Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem Soc Trans 44(2):377–385. https://doi.org/10.1042/BST20150254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689. https://doi.org/10.1038/nri2156

Article  CAS  PubMed  Google Scholar 

Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80. https://doi.org/10.1126/science.aaa6204

Article  CAS  PubMed  Google Scholar 

Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Can Res 56(5):1111–1117

CAS  Google Scholar 

Piali L, Fichtd A, Terpe HJ, Imhof BA, Gisler RH (1995) Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med 181(2):811–816. https://doi.org/10.1084/jem.181.2.811

Article  CAS  PubMed  Google Scholar 

Huang H, Langenkamp E, Georganaki M, Loskog A, Fuchs PF, Dieterich LC, Kreuger J, Dimberg A (2015) VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J 29(1):227–238. https://doi.org/10.1096/fj.14-250985

Article  CAS  PubMed  Google Scholar 

Dirkx AEM, Oude Egbrink MGA, Castermans K, Van Der Schaft DWJ, Thijssen VLJL, Dings RPM, Kwee L, Mayo KH, Wagstaff J, Bouma-ter Steege JCA, Griffioen AW (2006) Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 20(6):621–630. https://doi.org/10.1096/fj.05-4493com

Article  CAS  PubMed  Google Scholar 

Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Can Res 70(15):6171–6180. https://doi.org/10.1158/0008-5472.CAN-10-0153

Article  CAS  Google Scholar 

Boettner B, Van Aelst L (2009) Control of cell adhesion dynamics by Rap1 signaling. Curr Opin Cell Biol 21(5):684–693

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC, Vansluys J (2008) Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 111(5):2647–2656. https://doi.org/10.1182/blood-2007-08-109710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan J, Li F, Ingram DA, Quilliam LA (2008) Rap1a is a key regulator of fibroblast growth factor 2-induced angiogenesis and together with Rap1b controls human endothelial cell functions. Mol Cell Biol 28(18):5803–5810

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmona G, Gottig S, Orlandi A, Scheele J, Bauerle T, Jugold M, Kiessling F, Henschler R, Zeiher AM, Dimmeler S, Chavakis E (2009) Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 113(2):488–497. https://doi.org/10.1182/blood-2008-02-138438

Article  CAS  PubMed  Google Scholar 

Chrzanowska-Wodnicka M (2010) Regulation of angiogenesis by a small GTPase Rap1. Vascul Pharmacol 53(1–2):1–10. https://doi.org/10.1016/j.vph.2010.03.003

Article  CAS  PubMed  Google Scholar 

Lakshmikanthan S, Sobczak M, Li Calzi S, Shaw L, Grant MB, Chrzanowska-Wodnicka M (2018) Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier. J Cell Sci. https://doi.org/10.1242/jcs.207605

Article  PubMed  PubMed Central  Google Scholar 

Xin G, Khatun A, Topchyan P, Zander R, Volberding PJ, Chen Y, Shen J, Fu C, Jiang A, See WA, Cui W (2020) Pathogen-boosted adoptive cell transfer therapy induces endogenous antitumor immunity through antigen spreading. Cancer Immunol Res 8(1):7–18. https://doi.org/10.1158/2326-6066.CIR-19-0251

Article  CAS  PubMed  Google Scholar 

Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006

Article  CAS  PubMed  Google Scholar 

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Method 14(4):417–419. https://doi.org/10.1038/nmeth.4197

Article  CAS  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8

Article  PubMed  PubMed Central  Google Scholar 

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34. https://doi.org/10.1093/nar/27.1.29

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655. https://doi.org/10.1093/nar/gkx1132

Article  CAS  PubMed  Google Scholar 

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740. https://doi.org/10.1093/bioinformatics/btr260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300

Google Scholar 

Gu SX, Blokhin IO, Wilson KM, Dhanesha N, Doddapattar P, Grumbach IM, Chauhan AK, Lentz SR (2016) Protein methionine oxidation augments reperfusion injury in acute ischemic stroke. JCI Insight. https://doi.org/10.1172/jci.insight.86460

Article  PubMed  PubMed Central  Google Scholar 

Seigner J, Junker-Samek M, Plaza A, D’Urso G, Masullo M, Piacente S, Holper-Schichl YM, de Martin R (2019) A symphytum officinale root extract exerts anti-inflammatory properties by affecting two distinct steps of nf-κb signaling. Front Pharmacol 10:289–289. https://doi.org/10.3389/fphar.2019.00289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilhelmsen K, Farrar K, Hellman J (2013) Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions. J V Exp: JoVE 78:e50677–e50677. https://doi.org/10.3791/50677

Article  CAS  Google Scholar 

Mansour AA, Raucci F, Sevim M, Saviano A, Begum J, Zhi Z, Pezhman L, Tull S, Maione F, Iqbal AJ (2022) Galectin-9 supports primary T cell transendothelial migration in a glycan and integrin dependent manner. Biomed Pharmacother 151:113171. https://doi.org/10.1016/j.biopha.2022.113171

Article  CAS  PubMed  Google Scholar 

Graham VA, Marzo AL, Tough DF (2007) A role for CD44 in T cell development and function during direct competition between CD44+ and CD44– cells. Eur J Immunol 37(4):925–934. https://doi.org/10.1002/eji.200635882

Article  CAS  PubMed  Google Scholar 

Kelso A, Costelloe EO, Johnson BJ, Groves P, Buttigieg K, Fitzpatrick DR (2002) The genes for perforin, granzymes A-C and IFN-γ are differentially expressed in single CD8+ T cells during primary activation. Int Immunol 14(6):605–613. https://doi.org/10.1093/intimm/dxf028

Article  CAS  PubMed  Google Scholar 

Kohli K, Pillarisetty VG, Kim TS (2022) Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 29(1):10–21. https://doi.org/10.1038/s41417-021-00303-x

Article  CAS  PubMed  Google Scholar 

Karin N (2020) CXCR3 ligands in cancer and autoimmunity, chemoattraction of effector t cells, and beyond. Front Immunol 11:976. https://doi.org/10.3389/fimmu.2020.00976

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakshmikanthan S, Sobczak M, Chun C, Henschel A, Dargatz J, Ramchandran R, Chrzanowska-Wodnicka M (2011) Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin alphavbeta(3). Blood 118(7):2015–2026. https://doi.org/10.1182/blood-2011-04-349282

Article 

留言 (0)

沒有登入
gif