Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun

Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1964;204(204):1104–5. https://doi.org/10.1038/2041104b0. PMID: 14243400.

Kirsten WH, Mayer LA. Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst. 1967;39(2):311–35 PMID: 18623947.

Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969–74. https://doi.org/10.1158/0008-5472.CAN-19-3682.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barlesi F, Mazieres J, Merlio JP, Debieuvre D, Mosser J, Lena H, Ouafik L, Besse B, Rouquette I, Westeel V, Escande F, Monnet I, Lemoine A, Veillon R, Blons H, Audigier-Valette C, Bringuier PP, Lamy R, Beau-Faller M, et al. Biomarkers France contributors. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet. 2016;387(10026):1415–26. https://doi.org/10.1016/S0140-6736(16)00004-0.

Article  CAS  PubMed  Google Scholar 

Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611–25.

Article  CAS  PubMed  Google Scholar 

Dogan S, Shen R, Ang DC, Johnson ML, D'Angelo SP, Paik PK, Brzostowski EB, Riely GJ, Kris MG, Zakowski MF, Ladanyi M. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res. 2012;18(22):6169–77. https://doi.org/10.1158/1078-0432.CCR-11-3265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Judd J, Abdel Karim N, Khan H, Naqash AR, Baca Y, Xiu J, VanderWalde AM, Mamdani H, Raez LE, Nagasaka M, Pai SG, Socinski MA, Nieva JJ, Kim C, Wozniak AJ, Ikpeazu C, de Lima LG, Spira AI Jr, Korn WM, et al. Characterization of KRAS mutation subtypes in non-small Cell lung cancer. Mol Cancer Ther. 2021;20(12):2577–84. https://doi.org/10.1158/1535-7163.MCT-21-0201.

Article  CAS  PubMed  Google Scholar 

Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990;323:561–5.

Article  CAS  PubMed  Google Scholar 

Shepherd FA, Domerg C, Hainaut P, Jänne PA, Pignon JP, Graziano S, Douillard JY, Brambilla E, Le Chevalier T, Seymour L, Bourredjem A, Le Teuff G, Pirker R, Filipits M, Rosell R, Kratzke R, Bandarchi B, Ma X, Capelletti M, et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2013;31:2173–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima EC, Ren Y, Vallejo JJ, Akinboro O, Mishra-Kalyani PS, Larkins EA, Drezner NL, Tang S, Pazdur R, Beaver JA, Singh H. Outcomes of first-line immune checkpoint inhibitors with or without chemotherapy according to KRAS mutational status and PD-L1 expression in patients with advanced NSCLC: FDA pooled analysis. J Clin Oncol. 2022;40(16_suppl):9001–1.

Article  Google Scholar 

Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17–33. https://doi.org/10.1016/j.cell.2017.06.009 PMID: 28666118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10(12):842–57. https://doi.org/10.1038/nrc2960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309. https://doi.org/10.1152/physrev.00003.2012 PMID: 23303910.

Article  CAS  PubMed  Google Scholar 

Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25. https://doi.org/10.1016/s0092-8674(00)00114-8 PMID: 11057895.

Article  CAS  PubMed  Google Scholar 

Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature. 1993;363(6424):88–92. https://doi.org/10.1038/363088a0 PMID: 8386805.

Article  CAS  PubMed  Google Scholar 

Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527–32. https://doi.org/10.1038/370527a0 PMID: 8052307.

Article  CAS  PubMed  Google Scholar 

Hofer F, Fields S, Schneider C, Martin GS. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci U S A. 1994;91(23):11089–93. https://doi.org/10.1073/pnas.91.23.11089 PMID: 7972015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobs F, Cani M, Malapelle U, Novello S, Napoli VM, Bironzo P. Targeting KRAS in NSCLC: old failures and new options for “Non-G12c” patients. Cancers (Basel). 2021;13(24):6332. https://doi.org/10.3390/cancers13246332.

Article  PubMed  PubMed Central  Google Scholar 

Schmid S, Gautschi O, Rothschild S, Mark M, Froesch P, Klingbiel D, Reichegger H, Jochum W, Diebold J, Früh M. Clinical outcome of ALK-positive non-small cell lung cancer (NSCLC) patients with de novo EGFR or KRAS co-mutations receiving tyrosine kinase inhibitors (TKIs). J Thorac Oncol. 2017;12(4):681–8. https://doi.org/10.1016/j.jtho.2016.12.003.

Article  PubMed  Google Scholar 

Gainor JF, Varghese AM, Ou SH, Kabraji S, Awad MM, Katayama R, Pawlak A, Mino-Kenudson M, Yeap BY, Riely GJ, Iafrate AJ, Arcila ME, Ladanyi M, Engelman JA, Dias-Santagata D, Shaw AT. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19(15):4273–81. https://doi.org/10.1158/1078-0432.CCR-13-0318.

Article  CAS  PubMed  Google Scholar 

Choughule A, Sharma R, Trivedi V, Thavamani A, Noronha V, Joshi A, Desai S, Chandrani P, Sundaram P, Utture S, Jambhekar N, Gupta S, Aich J, Prabhash K, Dutt A. Coexistence of KRAS mutation with mutant but not wild-type EGFR predicts response to tyrosine-kinase inhibitors in human lung cancer. Br J Cancer. 2014;111(11):2203–4. https://doi.org/10.1038/bjc.2014.401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finn SP, Addeo A, Dafni U, Thunnissen E, Bubendorf L, Madsen LB, Biernat W, Verbeken E, Hernandez-Losa J, Marchetti A, Cheney R, Warth A, Speel EM, Quinn AM, Monkhorst K, Jantus-Lewintre E, Tischler V, Marti N, Dimopoulou G, et al. European Thoracic Oncology Platform Lungscape Investigators. Prognostic impact of KRAS G12C mutation in patients with NSCLC: Results From the European Thoracic Oncology Platform Lungscape Project. J Thorac Oncol. 2021;16(6):990–1002. https://doi.org/10.1016/j.jtho.2021.02.016.

Article  CAS  PubMed  Google Scholar 

Scheffler M, Ihle MA, Hein R, Merkelbach-Bruse S, Scheel AH, Siemanowski J, Brägelmann J, Kron A, Abedpour N, Ueckeroth F, Schüller M, Koleczko S, Michels S, Fassunke J, Pasternack H, Heydt C, Serke M, Fischer R, Schulte W, et al. K-RAS mutation subtypes in NSCLC and associated co-occuring mutations in other oncogenic pathways. J Thorac Oncol. 2019;14(4):606–16. https://doi.org/10.1016/j.jtho.2018.12.013.

Article  CAS  PubMed  Google Scholar 

Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019;19(9):495–509. https://doi.org/10.1038/s41568-019-0179-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, Zhang J, Giri U, Gudikote J, Cortez MA, Yang C, Fan Y, Peyton M, Girard L, Coombes KR, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77. https://doi.org/10.1158/2159-8290.CD-14-1236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, Ross JS, Fabrizio D, Szabo PM, Chang H, Sasson A, Srinivasan S, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–35. https://doi.org/10.1158/2159-8290.CD-18-0099.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricciuti B, Arbour KC, Lin JJ, Vajdi A, Vokes N, Hong L, Zhang J, Tolstorukov MY, Li YY, Spurr LF, Cherniack AD, Recondo G, Lamberti G, Wang X, Venkatraman D, Alessi JV, Vaz VR, Rizvi H, Egger J, et al. Diminished efficacy of programmed death-(Ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. J Thorac Oncol. 2022;17(3):399–410. https://doi.org/10.1016/j.jtho.2021.10.013 Epub 2021 Nov 2.

Article  CAS  PubMed  Google Scholar 

Timar J, Kashofer K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 2020;39(4):1029–38. https://doi.org/10.1007/s10555-020-09915-5 PMID: 32725342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, Normanno N, Scarpa A, Robson M, Meric-Bernstam F, Wagle N, Stenzinger A, Bonastre J, Bayle A, Michiels S, Bièche I, Rouleau E, Jezdic S, Douillard JY, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31(11):1491–505. https://doi.org/10.1016/j.annonc.2020.07.014 Epub 2020 Aug 24.

Article  CAS  PubMed  Google Scholar 

Nacchio M, Sgariglia R, Gristina V, Pisapia P, Pepe F, De Luca C, Migliatico I, Clery E, Greco L, Vigliar E, Bellevicine C, Russo A, Troncone G, Malapelle U. KRAS mutations testing in non-small cell lung cancer: the role of Liquid biopsy in the basal setting. J Thorac Dis. 2020;12(7):3836–43. https://doi.org/10.21037/jtd.2020.01.19.

Article 

留言 (0)

沒有登入
gif