Molecular Imaging of the GABAergic System in Parkinson’s Disease and Atypical Parkinsonisms

Niccolini F, Politis M. A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging. 2016;43(12):2244–54. https://doi.org/10.1007/s00259-016-3464-8.

Article  PubMed  PubMed Central  Google Scholar 

Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75. https://doi.org/10.1016/0166-2236(89)90074-x.

Article  CAS  PubMed  Google Scholar 

Purves D AG, Fitzpatrick D, Hall WC, LaMantia AS, Mooney RD, Platt ML, White LE. Neuroscience. Neuroscience. 2018;85–402.

Andersson JD MD, Finnema SJ. Positron emission tomography imaging of the γ-aminobutyric acid system. Neurosci Lett. 2019;35–43. https://doi.org/10.1016/j.neulet.2018.08.010.

Diamond JM, Lopes MB, Elias WJ, Jansen LA. Gamma-aminobutyric acid A receptor subunit expression and cellular localization in the human parkinsonian globus pallidus. World Neurosurg. 2022;165:e159–68. https://doi.org/10.1016/j.wneu.2022.05.121.

Article  PubMed  Google Scholar 

Calon F, Morissette M, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T. Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov Disord. 2003;18(3):241–53. https://doi.org/10.1002/mds.10343.

Article  PubMed  Google Scholar 

Griffiths PD, Sambrook MA, Perry R, Crossman AR. Changes in benzodiazepine and acetylcholine receptors in the globus pallidus in Parkinson’s disease. J Neurol Sci. 1990;100(1–2):131–6. https://doi.org/10.1016/0022-510x(90)90023-g.

Article  CAS  PubMed  Google Scholar 

•• Takashima H, Terada T, Bunai T, Matsudaira T, Obi T, Ouchi Y. In vivo illustration of altered dopaminergic and GABAergic systems in early Parkinson’s disease. Front Neurol. 2022;13:880407. https://doi.org/10.3389/fneur.2022.880407. This study by Takashima and colleagues is, to the best of their knowlegde, the first to use PET imaging to investigate GABAergic alterations in Parkinson's disease. They show reduced binding potential of C11-FMZ in the striatum and cortical areas. Furthermore, they characterize the cognital integrity of their cohort with scores FAB and MMSE and thereby report a positive correlation between excecutive function and GABA in the frontal cortex.

Kawabata K, Tachibana H, Sugita M, Fukuchi M. Impairment of benzodiazepine receptor in Parkinson’s disease evaluated by 123I-iomazenil SPECT. Kaku Igaku. 1996;33(4):391–7.

CAS  PubMed  Google Scholar 

Mullins PG, McGonigle DJ, O’Gorman RL, Puts NA, Vidyasagar R, Evans CJ, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43–52. https://doi.org/10.1016/j.neuroimage.2012.12.004.

Article  CAS  PubMed  Google Scholar 

• Seger AD, Farrher E, Doppler CEJ, Gogishvili A, Worthoff WA, Filss CP, et al. Putaminal y-aminobutyric acid modulates motor response to dopaminergic therapy in Parkinson’s disease. Mov Disord. 2021;36(9):2187–92. https://doi.org/10.1002/mds.28674. The authors use 7-T MRS to investigate the GABAergic signal in the putamen patients with Parkinson’s disease and find it increased compared to healthy controls. They assess their patients clinically with the MDS-UPDRS before and after dopaminergic therapy and find an inverse correlation between putaminal GABA levels and treatment response.

Emir UE, Tuite PJ, Öz G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS ONE. 2012;7(1):e30918. https://doi.org/10.1371/journal.pone.0030918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Gorman Tuura RL, Baumann CR, Baumann-Vogel H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front Neurol. 2018;9:806. https://doi.org/10.3389/fneur.2018.00806.

Article  PubMed  PubMed Central  Google Scholar 

Kish SJ, Rajput A, Gilbert J, Rozdilsky B, Chang LJ, Shannak K, et al. Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson’s disease: correlation with striatal dopamine loss. Ann Neurol. 1986;20(1):26–31. https://doi.org/10.1002/ana.410200106.

Article  CAS  PubMed  Google Scholar 

Chassain C, Bielicki G, Keller C, Renou JP, Durif F. Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed. 2010;23(6):547–53. https://doi.org/10.1002/nbm.1504.

Article  CAS  PubMed  Google Scholar 

Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traoré A, et al. Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson’s disease, the MPTP-intoxicated mouse. J Neurochem. 2008;105(3):874–82. https://doi.org/10.1111/j.1471-4159.2007.05185.x.

Article  CAS  PubMed  Google Scholar 

Elmaki EEA, Gong T, Nkonika DM, Wang G. Examining alterations in GABA concentrations in the basal ganglia of patients with Parkinson’s disease using MEGA-PRESS MRS. Jpn J Radiol. 2018;36(3):194–9. https://doi.org/10.1007/s11604-017-0714-z.

Article  CAS  PubMed  Google Scholar 

Gong T, Xiang Y, Saleh MG, Gao F, Chen W, Edden RAE, et al. Inhibitory motor dysfunction in parkinson’s disease subtypes. J Magn Reson: JMRI. 2018;47(6):1610–5. https://doi.org/10.1002/jmri.25865.

Article  Google Scholar 

Pesch B, Casjens S, Woitalla D, Dharmadhikari S, Edmondson DA, Zella MAS, et al. Impairment of motor function correlates with neurometabolite and brain iron alterations in Parkinson’s disease. Cells. 2019;8(2). https://doi.org/10.3390/cells8020096.

Dharmadhikari S, Ma R, Yeh CL, Stock AK, Snyder S, Zauber SE, et al. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. Neuroimage. 2015;120:36–42. https://doi.org/10.1016/j.neuroimage.2015.06.066.

Article  CAS  PubMed  Google Scholar 

Zauber S, Dharmadhikari S, Snyder S, Dydak U. Elevated thalamic GABA levels in Parkinson disease, measured by 3 tesla MR spectroscopy, correlate with disease severity (P6076). Neurology. 2015;84(14 Sepplement):6.076.

Google Scholar 

• van Nuland AJM, den Ouden HEM, Zach H, Dirkx MFM, van Asten JJA, Scheenen TWJ, et al. GABAergic changes in the thalamocortical circuit in Parkinson’s disease. Hum Brain Mapp. 2020;41(4):1017–29. https://doi.org/10.1002/hbm.24857. Unlike the majority of studies discussed in the present review, the authors present data from a larger cohort of 60 patients with Parkinson's disease and 22 healthy controls. This allows them to divide patients according to tremor sympthomatology and treatment response. They found no differences in GABA levels between patients and healthy controls; however, they did find an inverse correlation between GABA levels in the motor cortes and MDS-UPDRS motor scores and, furthermore, in tremor-dominant patients, a similar negative correlation in the thalamus.

Delli Pizzi S, Franciotti R, Ferretti A, Edden RAE, Zöllner HJ, Esposito R, et al. High γ-aminobutyric acid content within the medial prefrontal cortex is a functional signature of somatic symptoms disorder in patients with Parkinson’s disease. Mov Disord. 2020;35(12):2184–92. https://doi.org/10.1002/mds.28221.

Article  CAS  PubMed  Google Scholar 

Gröger A, Kolb R, Schäfer R, Klose U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE. 2014;9(1):e84081. https://doi.org/10.1371/journal.pone.0084081.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oz G, Terpstra M, Tkác I, Aia P, Lowary J, Tuite PJ, et al. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med. 2006;55(2):296–301. https://doi.org/10.1002/mrm.20761.

Article  CAS  PubMed  Google Scholar 

Song Y, Gong T, Saleh MG, Mikkelsen M, Wang G, Edden RAE. Upper brainstem GABA levels in Parkinson’s disease. MAGMA. 2021;34(5):689–96. https://doi.org/10.1007/s10334-021-00910-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romenets SR, Wolfson C, Galatas C, Pelletier A, Altman R, Wadup L, et al. Validation of the non-motor symptoms questionnaire (NMS-Quest). Parkinsonism Relat Disord. 2012;18(1):54–8. https://doi.org/10.1016/j.parkreldis.2011.08.013.

Article  PubMed  Google Scholar 

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70. https://doi.org/10.1002/mds.22340.

Article  PubMed  Google Scholar 

Piras F, Vecchio D, Assogna F, Pellicano C, Ciullo V, Banaj N, et al. Cerebellar GABA levels and cognitive interference in Parkinson’s disease and healthy comparators. J Pers Med. 2020;11(1). https://doi.org/10.3390/jpm11010016.

Firbank MJ, Parikh J, Murphy N, Killen A, Allan CL, Collerton D, et al. Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology. 2018;91(7):e675–85. https://doi.org/10.1212/wnl.0000000000006007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khundakar AA, Hanson PS, Erskine D, Lax NZ, Roscamp J, Karyka E, et al. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathol Commun. 2016;4(1):66. https://doi.org/10.1186/s40478-016-0334-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Y, Gong T, Xiang Y, Mikkelsen M, Wang G, Edden RAE. Single-dose L-dopa increases upper brainstem GABA in Parkinson’s disease: a preliminary study. J Neurol Sci. 2021;422:117309. https://doi.org/10.1016/j.jns.2021.117309.

Article  CAS  PubMed  Google Scholar 

Møller A, Rømer Thomsen K, Brooks DJ, Mouridsen K, Blicher JU, Hansen KV, et al. Attenuation of dopamine-induced GABA release in problem gamblers. Brain Behav. 2019;9(3):e01239. https://doi.org/10.1002/brb3.1239.

Article  PubMed  PubMed Central  Google Scholar 

Lopes EF, Roberts BM, Siddorn RE, Clements MA, Cragg SJ. Inhibition of nigrostriatal dopamine release by striatal GABA(A) and GABA(B) receptors. J Neurosci. 2019;39(6):1058–65. https://doi.org/10.1523/jneurosci.2028-18.2018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;490(7419):262–6. https://doi.org/10.1038/nature11466.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts BM, Doig NM, Brimblecombe KR, Lopes EF, Siddorn RE, Threlfell S, et al. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat Commun. 2020;11(1):4958. https://doi.org/10.1038/s41467-020-18247-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trujillo P, Song AK, Hay KR, Aumann M, Yan Y, Kang H, et al. Dopamine-induced changes to thalamic GABA concentration in impulsive Parkinson disease patients. NPJ Parkinsons Dis. 2022;8(1):37. https://doi.org/10.1038/s41531-022-00298-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Adams NE, Hughes LE, Rouse MA, Phillips HN, Shaw AD, Murley AG, et al. GABAergic cortical network physiology in frontotemporal lobar degeneration. Brain: a journal of neurology. 2021;144(7):2135–45. https://doi.org/10.1093/brain/awab097. •• The authors report, to the best of their knowlegde, the first use of 7-T MRS to detect GABAergic changes in patient with progressive supranuclear palsy. They find decreased levels in the frontal cortex compared to healthy controls, which is consistent with previos PET imaging findings by Foster and colleagues.

Bonnet C, Rusz J, Hanuška J, Dezortová M, Jírů F, Sieger T, et al. GABA spectra and remote distractor effect in progressive supranuclear palsy: a pilot study. Rev Neurol (Paris). 2017;173(4):225–9. https://doi.org/10.1016/j.neurol.2017.03.007.

Article  CAS 

留言 (0)

沒有登入
gif