Silkworm carotenoprotein as an efficient carotenoid extractor, solubilizer and transporter

Found in many organisms, water-soluble carotenoproteins are prospective antioxidant nanocarriers for biomedical applications. Yet, the toolkit of characterized carotenoproteins is rather limited: such proteins are either too specific binders of only few different carotenoids, or their ability to transfer carotenoids to various acceptor systems is unknown. Here, by focusing on a recently characterized recombinant ~27-kDa Carotenoid-Binding Protein from Bombyx mori (BmCBP) [Slonimskiy et al., International Journal of Biological Macromolecules 214 (2022): 664–671], we analyze its carotenoid-binding repertoire and potential as a carotenoid delivery module. We show that BmCBP forms productive complexes with both hydroxyl- and ketocarotenoids - lutein, zeaxanthin, astaxanthin, canthaxanthin and a smaller antioxidant, aporhodoxanthinone, but not with β-carotene or retinal, which defines its broad ligand specificity toward xanthophylls valuable to human health. Moreover, the His-tagged BmCBP apoform is capable of cost-efficient and scalable enrichment of xanthophylls from various crude methanolic herbal extracts. Upon carotenoid binding, BmCBP remains monomeric and shows a remarkable ability to dynamically shuttle carotenoids to biological membrane models and to unrelated carotenoproteins, which in particular makes from the cyanobacterial Orange Carotenoid Protein a blue-light controlled photoswitch. Furthermore, administration of BmCBP loaded by zeaxanthin stimulates fibroblast growth, which is attractive for cell- and tissue-based assays.

留言 (0)

沒有登入
gif