Molecules with a TEMPO-based head group as high-performance organic friction modifiers

Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)

Article  Google Scholar 

Spikes H. Friction modifier additives. Tribol Lett 60(1): 5 (2015)

Article  Google Scholar 

Tang Z L, Li S H. A review of recent developments of friction modifiers for liquid lubricants (2007-present). Curr Opin Solid State Mater Sci 18(3): 119–139 (2014)

Article  Google Scholar 

Vaitkunaite G, Espejo C, Wang C, Thiébaut B, Charrin C, Neville A, Morina A. MoS2 tribofilm distribution from low viscosity lubricants and its effect on friction. Tribol Int 151: 106531 (2020)

Article  Google Scholar 

McQueen J S, Gao H, Black E D, Gangopadhyay A K, Jensen R K. Friction and wear of tribofilms formed by zinc dialkyl dithiophosphate antiwear additive in low viscosity engine oils. Tribol Int 38(3): 289–297 (2005)

Article  Google Scholar 

Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

Article  Google Scholar 

Zhou Y, Qu J. Ionic liquids as lubricant additives: A review. ACS Appl Mater Interfaces 9(4): 3209–3222 (2017)

Article  Google Scholar 

Kenbeek D, Buenemann T, Rieffe H. Review of organic friction modifiers—Contribution to fuel efficiency? SAE Technical Paper, 2000: 2000-01-1792.

Qiu S Q, Dong J X, Cheng G X. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils. Lubr Sci 11(3): 217–226 (1999)

Article  Google Scholar 

De Barros Bouchet M I, Martin J M, Avila J, Kano M, Yoshida K, Tsuruda T, Bai S D, Higuchi Y, Ozawa N, Kubo M, et al. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction. Sci Reports 7: 46394 (2017)

Google Scholar 

Ewen J P, Gattinoni C, Morgan N, Spikes H A, Dini D. Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32(18): 4450–4463 (2016)

Article  Google Scholar 

Li W M, Kumara C, Meyer H M III, Luo H M, Qu J. Compatibility between various ionic liquids and an organic friction modifier as lubricant additives. Langmuir 34(36): 10711–10720 (2018)

Article  Google Scholar 

Cyriac F, Yamashita N, Hirayama T, Yi T X, Poornachary S K, Chow P S. Mechanistic insights into the effect of structural factors on film formation and tribological performance of organic friction modifiers. Tribol Int 164: 107243 (2021)

Article  Google Scholar 

Hirayama T, Kawamura R, Fujino K, Matsuoka T, Komiya H, Onishi H. Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33(40): 10492–10500 (2017)

Article  Google Scholar 

Wells H M, Southcombe J E. The theory and practice of lubrication: The ‘“Germ”’ process. J Soc Chem Ind 39(5): T51–T66 (1920)

Google Scholar 

Deeley R M. Discussion on lubrication. Proc Phys Soc London 32(1): 1s (1919)

Article  MathSciNet  Google Scholar 

Guegan J, Southby M, Spikes H. Friction modifier additives, synergies and antagonisms. Tribol Lett 67(3): 83 (2019)

Article  Google Scholar 

Ratoi M, Niste V B, Alghawel H, Suen Y F, Nelson K. The impact of organic friction modifiers on engine oil tribofilms. RSC Adv 4(9): 4278–4285 (2014)

Article  Google Scholar 

Schwartz D K. Mechanisms and kinetics of self-assembled monolayer formation. Annu Rev Phys Chem 52: 107–137 (2001)

Article  Google Scholar 

Beltzer M, Jahanmir S. Role of dispersion interactions between hydrocarbon chains in boundary lubrication. A S L E Trans 30(1): 47–54 (1987)

Article  Google Scholar 

Jahanmir S. Chain length effects in boundary lubrication. Wear 102(4): 331–349 (1985)

Article  Google Scholar 

Jahanmir S, Beltzer M. Effect of additive molecular structure on friction coefficient and adsorption. J Tribol 108(1): 109–116 (1986)

Article  Google Scholar 

Okabe H, Masuko M, Sakurai K. Dynamic behavior of surface-adsorbed molecules under boundary lubrication. A S L E Trans 24(4): 467–473 (1981)

Article  Google Scholar 

Campen S M. Fundamentals of organic friction modifier behaviour. Ph.D. Thesis. London (UK): Imperial College London, 2012.

Google Scholar 

Zhang X W, Tsukamoto M, Zhang H D, Mitsuya Y, Itoh S, Fukuzawa K. Experimental study of application of molecules with a cyclic head group containing a free radical as organic friction modifiers. J Adv Mech Des Syst Manuf 14(4): JAMDSM0044 (2020)

Article  Google Scholar 

Onumata Y, Zhao H Y, Wang C, Morina A, Neville A. Interactive effect between organic friction modifiers and additives on friction at metal pushing V-belt CVT components. Tribol Trans 61(3): 474–481 (2018)

Article  Google Scholar 

Cyriac F, Tee X Y, Poornachary S K, Chow P S. Influence of structural factors on the tribological performance of organic friction modifiers. Friction 9(2): 380–400 (2021)

Article  Google Scholar 

Fry B M, Moody G, Spikes H A, Wong J S S. Adsorption of organic friction modifier additives. Langmuir 36(5): 1147–1155 (2020)

Article  Google Scholar 

Fry B M, Chui M Y, Moody G, Wong J S S. Interactions between organic friction modifier additives. Tribol Int 151: 106438 (2020)

Article  Google Scholar 

Kano M, Yasuda Y, Okamoto Y, Mabuchi Y, Hamada T, Ueno T, Ye J, Konishi S, Takeshima S, Martin J M, et al. Ultralow friction of DLC in presence of glycerol mono-oleate (GNO). Tribol Lett 18(2): 245–251 (2005)

Article  Google Scholar 

Kuwahara T, Romero P A, Makowski S, Weihnacht V, Moras G, Moseler M. Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat Commun 10: 151 (2019)

Article  Google Scholar 

Tatsumi G, Ratoi M, Shitara Y, Sakamoto K, Mellor B G. Effect of organic friction modifiers on lubrication of PEEK-steel contact. Tribol Int 151: 106513 (2020)

Article  Google Scholar 

Nalam P C, Pham A, Castillo R V, Espinosa-Marzal R M. Adsorption behavior and nanotribology of amine-based friction modifiers on steel surfaces. J Phys Chem C 123(22): 13672–13680 (2019)

Article  Google Scholar 

Hu W J, Xu Y H, Zeng X Q, Li J S. Alkyl-ethylene amines as effective organic friction modifiers for the boundary lubrication regime. Langmuir 36(24): 6716–6727 (2020)

Article  Google Scholar 

Pominov A, Müller-Hillebrand J, Träg J, Zahn D. Interaction models and molecular simulation systems of steel-organic friction modifier interfaces. Tribol Lett 69(1): 14 (2021)

Article  Google Scholar 

Desanker M, He X L, Lu J, Liu P Z, Pickens D B, Delferro M, Marks T J, Chung Y W, Wang Q J. Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl Mater Interfaces 9(10): 9118–9125 (2017)

Article  Google Scholar 

Desanker M, He X L, Lu J, Johnson B A, Liu Z, Delferro M, Ren N, Lockwood F E, Greco A, Erdemir A, et al. High-performance heterocyclic friction modifiers for boundary lubrication. Tribol Lett 66(1): 50 (2018)

Article  Google Scholar 

He X L, Lu J, Desanker M, Invergo A M, Lohr T L, Ren N, Lockwood F E, Marks T J, Chung Y W, Wang Q J. Boundary lubrication mechanisms for high-performance friction modifiers. ACS Appl Mater Interfaces 10(46): 40203–40211 (2018)

Article  Google Scholar 

Cosimbescu L, Demas N G, Robinson J W, Erck R A. Friction- and wear-reducing properties of multifunctional small molecules. ACS Appl Mater Interfaces 10(1): 1317–1323 (2018)

Article  Google Scholar 

Jaishankar A, Jusufi A, Vreeland J L, Deighton S, Pellettiere J, Schilowitz A M. Adsorption of stearic acid at the iron oxide/oil interface: Theory, experiments, and modeling. Langmuir 35(6): 2033–2046 (2019)

Article  Google Scholar 

Li D M, Gao P, Sun X J, Zhang S W, Zhou F, Liu W M. The study of TEMPOs as additives in different lubrication oils for steel/steel contacts. Tribol Int 73: 83–87 (2014)

Article  Google Scholar 

Prutton C F, Frey D R, Turnbull D, Dlouhy G. Corrosion of metals by organic acids in hydrocarbon solvents. Ind Eng Chem 37(1): 90–100 (1945)

Article  Google Scholar 

Gallez B, Demeure R, Debuyst R, Leonard D, Dejehet F, Dumont P. Evaluation of nonionic nitroxyl lipids as potential organ-specific contrast agents for magnetic resonance imaging. Magn Reson Imaging 10(3): 445–455 (1992)

Article  Google Scholar 

Nakatsuji S, Mizumoto M, Ikemoto H, Akutsu H, Yamada J I. Preparation and properties of organic radical compounds with mesogenic cores. Eur J Org Chem 2002(12): 1912–1918 (2002)

Article  Google Scholar 

Waggoner A S, Keith A D, Griffith O H. Electron spin resonance of solubilized long-chain nitroxides. J Phys Chem 72(12): 4129–4132 (1968)

Article  Google Scholar 

Li X, Deng X R, Kousaka H, Umehara N. Comparative study on effects of load and sliding distance on amorphous hydrogenated carbon (a-C:H) coating and tetrahedral amorphous carbon (ta-C) coating under base-oil lubrication condition. Wear 392-393: 84–92 (2017)

Article  Google Scholar 

Liu X X, Yamaguchi R, Umehara N, Deng X R, Kousaka H, Murashima M. Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribol Int 105: 193–200 (2017)

Article  Google Scholar 

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. Gaussian 16, revision C.01. Wallingford CT (USA): Gaussian, Inc., 2016.

Google Scholar 

Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120: 215–241 (2008)

Article  Google Scholar 

Ditchfield R, Hehre W J, Pople J A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2): 724–728 (1971)

Article  Google Scholar 

Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chimica Acta 28(3): 213–222 (1973)

Article  Google Scholar 

留言 (0)

沒有登入
gif