Typical dampers and energy harvesters based on characteristics of ferrofluids

Stephen P S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. U.S. Patent 3 215 572, Nov. 1965.

Singh C, Das A K, Das P K. Levitation of non-magnetizable droplet inside ferrofluid. J Fluid Mech 857: 398–448 (2018)

Article  MathSciNet  MATH  Google Scholar 

Yu J, Chen D, Cai Z Y, Li D C, Cao Q H, Qian L P. Research on the magnetic fluid levitation force received by a permanent magnet suspended in magnetic fluid: Consideration a surface instability. J Magn Magn Mater 492: 165678 (2019)

Article  Google Scholar 

Genc S, Derin B. Synthesis and rheology of ferrofluids: A review. Curr Opin Chem Eng 3: 118–124 (2014)

Article  Google Scholar 

Li W Y, Zhang Z L, Li D C. Rheological properties of silicon oil-based magnetic fluid with magnetic nanoparticles (MNPs)-multiwalled carbon nanotube (MWNT). Smart Mater Struct 28(6): 065023 (2019)

Article  Google Scholar 

Ryapolov P A, Polunin V M, Shel’deshova E V. An alternative way to study magnetic fluid magnetization and viscosity. J Magn Magn Mater 496: 165924 (2020)

Article  Google Scholar 

Odenbach S. Recent progress in magnetic fluid research. J Phys Condens Matter 16(32): R1135–R1150 (2004)

Article  Google Scholar 

Afifah A N, Syahrullail S, Sidik N A C. Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review. Renew Sustain Energy Rev 55: 1030–1040 (2016)

Article  Google Scholar 

Amirat Y, Hamdache K. Heat transfer in incompressible magnetic fluid. J Math Fluid Mech 14(2): 217–247 (2012)

Article  MathSciNet  MATH  Google Scholar 

Pilati V, Gomide G, Gomes R C, Goya G F, Depeyrot J. Colloidal stability and concentration effects on nanoparticle heat delivery for magnetic fluid hyperthermia. Langmuir 37(3): 1129–1140 (2021)

Article  Google Scholar 

Hong C Y, Yeh Y S, Yang S Y, Horng H E, Yang H C. Ordered structures with point-like defects of various shapes in magnetic fluid films. J Magn Magn Mater 283(1): 22–27 (2004)

Article  Google Scholar 

Zu P, Chan C C, Siang L W, Jin Y X, Zhang Y F, Fen L H, Chen L H, Dong X Y. Magneto-optic fiber Sagnac modulator based on magnetic fluids. Opt Lett 36(8): 1425–1427 (2011)

Article  Google Scholar 

Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V. Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D Appl Phys 46(39): 395501 (2013)

Article  Google Scholar 

Li D C. Theory and Application of Magnetic Fluid Sealing. Beijing: Science Press, 2010 (in Chinese).

Google Scholar 

Zhou H M, Chen Y B, Zhang Y J, Li D C. Simulation and experimental study on pressure transfer mechanism in multitooth magnetic fluid seals. Tribol Trans 64(1): 31–41 (2021)

Article  Google Scholar 

Wei F F, Mallik A K, Liu D J, Wu Q, Peng G D, Farrell G, Semenova Y. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Sci Rep 7: 4725 (2017)

Article  Google Scholar 

Zhao Y, Wang X X, Lv R Q, Li G L, Zheng H K, Zhou Y F. Highly sensitive reflective Fabry—Perot magnetic field sensor using magnetic fluid based on vernier effect. IEEE Trans Instrum Meas 70: 7000808 (2021)

Google Scholar 

Munshi M M, Patel A R, Deheri G M. Lubrication of rough short bearing on shliomis model by ferrofluid considering viscosity variation effect. Int J Math Eng Manag Sci 4(4): 982–997 (2019)

Google Scholar 

Jia J J, Yang G B, Zhang C L, Zhang S M, Zhang Y J, Zhang P Y. Effects of magnetic ionic liquid as a lubricant on the friction and wear behavior of a steel—steel sliding contact under elevated temperatures. Friction 9(1): 61–74 (2021)

Article  Google Scholar 

Wang J H, Zhuang W P, Liang W F, Yan T T, Li T, Zhang L X, Li S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction 10(5): 645–676 (2022)

Article  Google Scholar 

Wang Y M, Cao X, Liu G H, Hong R Y, Chen Y M, Chen X F, Li H Z, Xu B, Wei D G. Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J Magn Magn Mater 323(23): 2953–2959 (2011)

Article  Google Scholar 

El-Amri I, Iquebal A S, Srinivasa A, Bukkapatnam S. Localized magnetic fluid finishing of freeform surfaces using electropermanent magnets and magnetic concentration. J Manuf Process 34: 802–808 (2018)

Article  Google Scholar 

Mutalib N A, Ismail I, Soffie S M, Aqida S N. Magnetorheological finishing on metal surface: A review. IOP Conf Ser Mater Sci Eng 469: 012092 (2019)

Article  Google Scholar 

Raj K, Moskowitz R. Commercial applications of ferrofluids. J Magn Magn Mater 85(1–3): 233–245 (1990)

Article  Google Scholar 

Torres-Díaz I, Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 10(43): 8584–8602 (2014)

Article  Google Scholar 

Yu L Q, Zheng L J, Yang J X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Mater Chem Phys 66(1): 6–9 (2000)

Article  Google Scholar 

Hao R C, Liu H G, Wang S. Preparation and parameters measurement of magnetic fluid. J Phys Conf Ser 1637(1): 012016 (2020)

Article  Google Scholar 

Odenbach S. Ferrofluids—Magnetically controlled suspensions. Colloids Surf A Physicochem Eng Aspects 217(1–3): 171–178 (2003)

Article  Google Scholar 

Rosensweig R E. Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid. Nature 210(5036): 613–614 (1966)

Article  Google Scholar 

Yang W M, Li D C, He X Z, Li Q. Calculation of magnetic levitation force exerted on the cylindrical magnets immersed in ferrofluid. Int J Appl Electromagn Mech 40(1): 37–49 (2012)

Article  Google Scholar 

Rosensweig R E, Kaiser R, Miskolczy G. Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29(4): 680–686 (1969)

Article  Google Scholar 

McTague J P. Magnetoviscosity of magnetic colloids. J Chem Phys 51(1): 133–136 (1969)

Article  Google Scholar 

Rabinow J. The magnetic fluid clutch. Trans Am Inst Electr Eng 67(2): 1308–1315 (1948)

Article  Google Scholar 

Wereley N. Magnetorheology: Advances and Applications. Cambridge (UK): Royal Society of Chemistry, 2013.

Book  Google Scholar 

Rosensweig R E. Ferrohydrodynamics. Cambridge (UK): Cambridge University Press, 1997.

Google Scholar 

Shahrivar K, Morillas J R, Luengo Y, Gavilan H, Morales P, Bierwisch C, de Vicente J. Rheological behavior of magnetic colloids in the borderline between ferrofluids and magnetorheological fluids. J Rheol 63(4): 547–558 (2019)

Article  Google Scholar 

Rabbani Y, Hajinajaf N, Tavakoli O. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core—shell structured by cellulose. J Therm Anal Calorim 135(3): 1687–1697 (2019)

Article  Google Scholar 

Jahan N, Pathak S, Jain K, Pant R P. Enchancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid. Colloids Surf A Physicochem Eng Aspects 529: 88–94 (2017)

Article  Google Scholar 

Zhao P H, Fu Y Z, Li H L, Zhang C Y, Liu Y Q. Three-dimensional simulation study on the aggregation behavior and shear properties of magnetorheological fluid. Chem Phys Lett 722: 74–79 (2019)

Article  Google Scholar 

Paul P S, Iasanth J A, Vasanth X A, Varadarajan A S. Effect of nanoparticles on the performance of magnetorheological fluid damper during hard turning process. Friction 3(4): 333–343 (2015)

Article  Google Scholar 

Yuan X J, Tian T Y, Ling H T, Qiu T Y, He H L. A review on structural development of magnetorheological fluid damper. Shock Vib 2019: 1498962 (2019)

Google Scholar 

Missiles A. Feasibility study and model development for a ferrofluid viscous damper. Final report. Massachusett (UK): Space and Electronics Group, 1967, No. NASA-CR-94173, AVSSD-0222-67-CR.

Google Scholar 

Shimada K, Kanno H, Ogawa J, Syuchi S, Kamiyama S. New magnetic viscous damper with intelligent or smart fluid for the next generation. In: Proceedings of the Nano-and Microtechnology: Materials, Processes, Packaging, and Systems, Melbourne, Australia, 2002: 241–251.

Shimada K, Kamiyama S. Magnetic field effect on dynamic characteristics of magnetic fluid viscous damper. Transactions of the Japan Society of Mechanical Engineers Series B 59(567): 3493–3497 (1993) (in Japanese)

Article  Google Scholar 

Shimada K, Kamiyama S. A basic study on oscillatory characteristics of magnetic fluid viscous damper. Transactions of the Japan Society of Mechanical Engineers Series B 57(544): 4111–4115 (1991) (in Japanese)

Article  Google Scholar 

Moskowitz R, Stahl P, Reed W R. Inertia damper using ferrofluid. U.S. Patent 4 123 675, Oct. 1978.

Yang W M. Magnetic levitation force exerted on the cylindrical magnet in a ferrofluid damper. J Vib Control 23(14): 2345–2354 (2017)

Article  MathSciNet  Google Scholar 

Yu J, Chen J W, Li D C. Experimental error analysis of measuring the magnetic self-levitation force experienced by a permanent magnet suspended in magnetic fluid with a nonmagnetic rod. J Magn Magn Mater 469: 323–328 (2019)

Article  Google Scholar 

Bashtovoi V, Lavrova O, Mitkova T, Polevikov V, Tobiska L. Flow and energy dissipation in a magnetic fluid drop around a permanent magnet. J Magn Magn Mater 289: 207–210 (2005)

Article  Google Scholar 

Yang W R, Su J Z, Wei D J, Zhang Y M, Chen Y, Yang Q X, Yang X R. Experimental research on energy dissipation based on damping of magnetic fluid. Mater Res Express 7(10): 106103 (2020)

Article  Google Scholar 

Bashtovoi V G, Kabachnikov D N, Kolobov A Y, Samoylov V B, Vikoulenkov A V. Research of the dynamics of a magnetic fluid dynamic absorber. J Magn Magn Mater 252: 312–314 (2002)

Article  Google Scholar 

Iusan V Z, Stanci A G. Inertial magnetofluidic sensor. IEEE Trans Magn 30(2): 1104–1106 (1994)

Article  Google Scholar 

Yao J, Li D C, Chen X Z, Huang C, Xu D J. Damping performance of a novel ferrofluid dynamic vibration absorber. J Fluids Struct 90: 190–204 (2019)

Article  Google Scholar 

Ohno K I, Sawada T. An effect of vertical sloshing on a fluid pressure and a surface displacement in a tuned magnetic fluid damper. Int J Appl Electromagn Mech 33(3–4): 1411–1416 (2010)

Article 

留言 (0)

沒有登入
gif