Surface deformation under overlapping impacts of solid particles

Zheng C, Liu Y H, Wang H X, Zhu H Y, Liu Z K, Cai B P, Shen Y. Numerical study on improving the erosion life of ball seat for oil and gas reservoir fracturing. Eng Fail Anal 60: 188–198 (2016)

Article  Google Scholar 

Grewal H S, Agrawal A, Singh H. Slurry erosion performance of Ni—Al2O3 based composite coatings. Tribol Int 66: 296–306 (2013)

Article  Google Scholar 

Ahmed D H, Naser J, Deam R T. Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study. J Mater Process Technol 232: 116–130 (2016)

Article  Google Scholar 

Ojala N, Valtonen K, Antikainen A, Kemppainen A, Minkkinen J, Oja O, Kuokkala V T. Wear performance of quenched wear resistant steels in abrasive slurry erosion. Wear 354-355: 21–31 (2016)

Article  Google Scholar 

Tarodiya R, Gandhi B K. Hydraulic performance and erosive wear of centrifugal slurry pumps—A review. Powder Technol 305: 27–38 (2017)

Article  Google Scholar 

Darihaki F, Hajidavalloo E, Ghasemzadeh A, Safian G A. Erosion prediction for slurry flow in choke geometry. Wear 372-373: 42–53 (2017)

Article  Google Scholar 

Parsi M, Najmi K, Najafifard F, Hassani S, McLaury B S, Shirazi S A. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications. J Nat Gas Sci Eng 21: 850–873 (2014)

Article  Google Scholar 

Levy A V. The platelet mechanism of erosion of ductile metals. Wear 108(1): 1–21 (1986)

Article  Google Scholar 

Levy A V. The erosion of structural alloys, cermets and in situ oxide scales on steels. Wear 127(1): 31–52 (1988)

Article  Google Scholar 

Sheldon G L, Kanhere A. An investigation of impingement erosion using single particles. Wear 21(1): 195–209 (1972)

Article  Google Scholar 

Marshall D B, Evans A G, Gulden M E, Routbort J L, Scattergood R O. Particle size distribution effects on the solid particle erosion of brittle materials. Wear 71(3): 363–373 (1981)

Article  Google Scholar 

Finnie I. Erosion of surfaces by solid particles. Wear 3(2): 87–103 (1960)

Article  Google Scholar 

Bitter J G A. A study of erosion phenomena part I. Wear 6(1): 5–21 (1963)

Article  Google Scholar 

Bitter J G A. A study of erosion phenomena: Part II. Wear 6(3): 169–190 (1963)

Article  Google Scholar 

Hutchings I M, Winter R E, Field J E. Solid particle erosion of metals: The removal of surface material by spherical projectiles. P Roy Soc A-math Phy 348(1654): 379–392 (1976)

Google Scholar 

Hutchings I M. Deformation of metal surfaces by the oblique impact of square plates. Int J Mech Sci 19(1): 45–52 (1977)

Article  Google Scholar 

Hutchings I M, Macmillan N H, Rickerby D G. Further studies of the oblique impact of a hard sphere against a ductile solid. Int J Mech Sci 23(11): 639–646 (1981)

Article  Google Scholar 

Quadir T, Shewmon P. Solid particle erosion mechanisms in copper and two copper alloys. Metall Trans A 12(7): 1163–1176 (1981)

Article  Google Scholar 

Hutchings I M, Winter R E. Particle erosion of ductile metals: A mechanism of material removal. Wear 27(1): 121–128 (1974)

Article  Google Scholar 

Sahoo R, Jha B B, Sahoo T K, Mantry S. Effect of microstructural degradation on solid particle erosion behavior of 2.25Cr-1Mo steel. Tribol Trans 57(4): 679–689 (2014)

Article  Google Scholar 

Tirupataiah Y, Venkataraman B, Sundararajan G. The nature of the elastic rebound of a hard ball impacting on ductile, metallic target materials. Mater Sci Eng A 124(2): 133–140 (1990)

Article  Google Scholar 

Papini M, Dhar S. Experimental verification of a model of erosion due to the impact of rigid single angular particles on fully plastic targets. Int J Mech Sci 48(5): 469–482 (2006)

Article  Google Scholar 

Dhar S, Krajac T, Ciampini D, Papini M. Erosion mechanisms due to impact of single angular particles. Wear 258(1–4): 567–579 (2005)

Article  Google Scholar 

Shimizu K, Noguchi T, Seitoh H, Okada M, Matsubara Y. FEM analysis of erosive wear. Wear 250(1–12): 779–784 (2001)

Article  Google Scholar 

Shimizu K, Noguchi T, Seitoh H, Muranaka E. FEM analysis of the dependency on impact angle during erosive wear. Wear 233-235: 157–159 (1999)

Article  Google Scholar 

ElTobgy M S, Ng E, Elbestawi M A. Finite element modeling of erosive wear. Int J Mach Tools Manuf 45(11): 1337–1346 (2005)

Article  Google Scholar 

Junkar M, Jurisevic B, Fajdiga M, Grah M. Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32(7): 1095–1112 (2006)

Article  Google Scholar 

Li W Y, Wang J, Zhu H T, Li H Z, Huang C Z. On ultrahigh velocity micro-particle impact on steels—A single impact study. Wear 305(1–2): 216–227 (2013)

Article  Google Scholar 

Guo Y B, Yen D W. A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155-156: 1350–1356 (2004)

Article  Google Scholar 

Forder A, Thew M, Harrison D. A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear 216(2): 184–193 (1998)

Article  Google Scholar 

Ben-Ami Y, Levy A. Absorbed shear energy during solid particle impact on ductile surface. Wear 368-369: 162–172 (2016)

Article  Google Scholar 

Pan J J, Hu S S, Niu A N, Ding K Y, Yang L J. Numerical analysis of particle impacting and bonding processes during high velocity oxygen fuel spraying process. Appl Surf Sci 366: 187–192 (2016)

Article  Google Scholar 

Li W Y, Liao H L, Li C J, Bang H S, Coddet C. Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Appl Surf Sci 253(11): 5084–5091 (2007)

Article  Google Scholar 

Takaffoli M, Papini M. Finite element analysis of single impacts of angular particles on ductile targets. Wear 267(1–4): 144–151 (2009)

Article  Google Scholar 

Monaghan J J. An introduction to SPH. Comput Phys Commun 48(1): 89–96 (1988)

Article  MATH  Google Scholar 

Shao J R, Li H Q, Liu G R, Liu M B. An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100-101: 18–26 (2012)

Article  Google Scholar 

Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139(1–1): 347–373 (1996)

Article  MATH  Google Scholar 

Aktay L, Johnson A F. FEM/SPH coupling technique for high velocity impact simulations. In: Advances in Meshfree Techniques.Dordrecht (the Netherlands): Springer Netherlands, 1970: 147–167.

Google Scholar 

Deliwala A A, Peter M R, Yerramalli C S. A multiple particle impact model for prediction of erosion in carbon-fiber reinforced composites. Wear 406-407: 185–193 (2018)

Article  Google Scholar 

Cao X W, Fu C Y, Xie Z Q, Wu C, Sun X Y. Simulation and experimental study on the surface morphology and energy lost of the target material under non-overlapping impact of angular particles. Chin J Chem Eng 29: 47–56 (2021)

Article  Google Scholar 

Zang X R, Cao X W, Zhang J, Xie Z Q, Xiong N, Darihaki F, Bian J. Investigation of surface damage of ductile materials caused by rotating particles. Wear 488-489: 204185 (2022)

Article  Google Scholar 

Vyas D R, Cummins S J, Rudman M, Cleary P W, Delaney G W, Khakhar D V. Collisional SPH: A method to model frictional collisions with SPH. Appl Math Model 94: 13–35 (2021)

Article  MathSciNet  MATH  Google Scholar 

Hausberger A, Major Z, Theiler G, Gradt T. Observation of the adhesive- and deformation- contribution to the friction and wear behaviour of thermoplastic polyurethanes. Wear 412-413: 14–22 (2018)

Article  Google Scholar 

Hassanamraji N, Eivani A R, Aboutalebi M R. Finite element simulation of deformation and heat transfer during friction stir processing of as-cast AZ91 magnesium alloy. J Mater Res Technol 14: 2998–3017 (2021)

Article  Google Scholar 

Hao G N, Dong X W, Du M C, Li Z L, Dou Z C. A comparative study of ductile and brittle materials due to single angular particle impact. Wear 428-429: 258–271 (2019)

Article  Google Scholar 

Arabnejad H, Uddin H, Panda K, Talya S, Shirazia S A. Testing and modeling of particle size effect on erosion of steel and cobalt-based alloys. Powder Technol 394: 1186–1194 (2021)

Article  Google Scholar 

Hutchings I M. A model for the erosion of metals by spherical particles at normal incidence. Wear 70(3): 269–281 (1981)

Article  Google Scholar 

Beckmann G, Gotzmann J. Analytical model of the blast wear intensity of metals based on a general arrangement for abrasive wear. Wear 73(2): 325–353 (1981)

Article  Google Scholar 

Dhar S, Krajac T, Ciampini D, Papini M. Erosion mechanisms due to impact of single angular particles. Wear 258(1–4): 567–579 (2005)

Article  Google Scholar 

Briscoe B J. Contact mechanics. Tribol Int 19(2): 109–110 (1986)

Article  Google Scholar 

Lemaitre J. Evalution of dissipation and damage in metals submitted to dynamic loading, mechanical behavior of materials. In: Proceedings of the International Conference on Materials, Kyoto, Japan, 1972: 540–549.

Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1): 31–48 (1985)

Article  Google Scholar 

留言 (0)

沒有登入
gif