Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets

Barfield, W. D. Public health implications of very preterm birth. Clin. Perinatol. 45, 565–577 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Peila, C. et al. Extrauterine growth restriction: definitions and predictability of outcomes in a cohort of very low birth weight infants or preterm neonates. Nutrients 12, 1224–1234 (2020).

Article  PubMed Central  Google Scholar 

Platt, M. J. Outcomes in preterm infants. Public Health 128, 399–403 (2014).

Article  PubMed  Google Scholar 

Koontz, M. B., Gunzler, D. D., Presley, L. & Catalano, P. M. Longitudinal changes in infant body composition: association with childhood obesity. Pediatr. Obes. 9, e141–e144 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kajantie, E., Osmond, C., Barker, D. J. & Eriksson, J. G. Preterm birth–a risk factor for type 2 diabetes? The Helsinki Birth Cohort Study. Diabetes Care. 33, 2623–2625 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Ahmad, I. Body composition and its components in preterm and term newborns: a cross-sectional, multimodal investigation. Am. J. Hum. Biol. 22, 69–75 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Davis, T. A. & Fiorotto, M. L. Regulation of muscle growth in neonates. Curr. Opin. Clin. Nutr. Metab. Care. 12, 78–85 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Davis, T. A. et al. Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 282, E880–E890 (2002).

Article  PubMed  Google Scholar 

Suryawan, A. et al. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am. J. Physiol. Endocrinol. Metab. 293, E1597–E1605 (2007).

Article  PubMed  Google Scholar 

Naberhuis, J. K. et al. Prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in muscle of neonatal piglets. Am. J. Physiol. Endocrinol. Metab. 317, E839–E851 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rudar, M. et al. Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 320, E551–E565 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Blanco, C. L. et al. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons. Endocrinology 156, 813–823 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez, E. & McGraw, T. E. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009).

Article  PubMed  Google Scholar 

Gao, Y., Moten, A. & Lin, H.-K. Akt: a new activation mechanism. Cell Res. 24, 785–786 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Lien, E. C., Dibble, C. C. & Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 45, 62–71 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Proc. Natl Acad. Sci. USA 97, 10832–10837 (2000).

Google Scholar 

Gupta, A. & Dey, C. S. PTEN and SHIP2 regulates PI3K/Akt pathway through focal adhesion kinase. Mol. Cell. Endocrinol. 309, 55–62 (2009).

Article  PubMed  Google Scholar 

Oudart, J. B. et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through alphavbeta3 integrin interaction. Oncotarget 7, 1516–1528 (2016).

Article  PubMed  Google Scholar 

Zhao, Y. et al. Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Proc. Natl Acad. Sci. USA 112, 9644–9649 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Liao, Y. & Hung, M.-C. Physiological regulation of Akt activity and stability. Am. J. Transl. Res. 2, 19–42 (2010).

PubMed  PubMed Central  Google Scholar 

Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. & Leal, J. F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug. Targets 8, 187–198 (2008).

Article  PubMed  Google Scholar 

Azzi, A. SHIP2 inhibition alters redox-induced PI3K/Akt and MAP kinase pathways via PTEN over-activation in cervical cancer cells. FEBS Open Biol. 10, 2191–2205 (2020).

Article  Google Scholar 

Seshacharyulu, P., Pandey, P., Datta, K. & Batra, S. K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 335, 9–18 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143, 97–910 (2010).

Article  Google Scholar 

Jacquin, M. A. et al. GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ. 20, 1043–1054 (2015).

Article  Google Scholar 

Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA 97, 10832–10837 (2000).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Q. & Claret, F. X. Phosphatases: the new brakes for cancer development? Enzym. Res. 2012, 659649 (2012).

Article  Google Scholar 

Burrin, D. G. et al. Translational advances in pediatric nutrition and gastroenterology: new insights from pig models. Ann. Rev. Anim. Biosci. 8, 321–335 (2020).

Article  Google Scholar 

Williamson, D. L. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J. Appl. Physiol. 117, 246–256 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Du, K. & Tsichlis, P. N. Regulation of the Akt kinase by interacting proteins. Oncogene 24, 7401–7409 (2005).

Article  PubMed  Google Scholar 

Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).

Article  PubMed  Google Scholar 

Hay, W. W. Jr Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi 19, 1–21 (2017).

PubMed  Google Scholar 

Glass, D. J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr. Top. Microbiol. Immunol. 346, 267–278 (2010).

PubMed  Google Scholar 

Wilson, F. A. et al. Feeding rapidly stimulates protein synthesis in skeletal muscle of the neonatal pig by enhancing translation initiation. J. Nutr. 139, 1873–1880 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Hers, I., Vincent, E. E. & Tavaré, J. M. Akt signalling in health and disease. Cell Signal. 23, 1515–1527 (2011).

Article  PubMed  Google Scholar 

Matheny, R. W. Jr. et al. Akt2 is the predominant Akt isoform expressed in human skeletal muscle. Physiol. Rep. 6, 1–8 (2018).

Article  Google Scholar 

Manning, B. D. & Alex Toker, A. Akt/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

Article  PubMed  Google Scholar 

Paul, R. et al. FAK activates Akt-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors. Breast Cancer Res. 22, 59–73 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yun, B.-G. & Matts, R. L. Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal. 17, 1477–1485 (2005).

Article  PubMed  Google Scholar 

Georgescu, M. M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1, 1170–1177 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Pan, Q., Wu, J., Liu, Y., Li, X. & Chen, J. Involvement of hepatic SHIP2 and PI3K/Akt signalling in the regulation of plasma insulin by xiaoyaosan in chronic immobilization-stressed rats. Molecules 24, 480–496 (2019).

Article  PubMed Central  Google Scholar 

Millward, T. A., Zolnierowicz, S. & Hemmings, B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191 (1999).

Article 

留言 (0)

沒有登入
gif