Cell-based therapies for neurological disorders — the bioreactor hypothesis

Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

Article  CAS  PubMed  Google Scholar 

Backlund, E. O. et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg. 62, 169–173 (1985).

Article  CAS  PubMed  Google Scholar 

Ma, Y. et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J. Nucl. Med. 51, 7–15 (2010).

Article  PubMed  Google Scholar 

Piao, J. et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28, 217–229 e217 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

No authors listed. First Parkinson’s patients dosed with dopaminergic neurons. Nat. Biotechnol. 39, 785 (2021).

Article  Google Scholar 

Riecke, J. et al. A meta-analysis of mesenchymal stem cells in animal models of Parkinson’s disease. Stem Cell Dev. 24, 2082–2090 (2015).

Article  Google Scholar 

Jackson, M. L., Srivastava, A. K. & Cox, C. S. Jr Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. J. Surg. Res. 214, 38–48 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wang, Z. et al. Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: a systematic review and meta-analysis. Sci. Rep. 5, 12134 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Muthu, S., Jeyaraman, M., Gulati, A. & Arora, A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy 23, 186–197 (2021).

Article  PubMed  Google Scholar 

Misra, V., Lal, A., El Khoury, R., Chen, P. R. & Savitz, S. I. Intra-arterial delivery of cell therapies for stroke. Stem Cell Dev. 21, 1007–1015 (2012).

Article  CAS  Google Scholar 

Petrou, P. et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain 143, 3574–3588 (2020).

Article  PubMed  Google Scholar 

Ohtaki, H. et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc. Natl Acad. Sci. USA 105, 14638–14643 (2008). One of the first studies to show that intracerebral injection of MSCs modifies microglia-mediated neuroinflammation in a rodent model of a common neurological condition resulting from global cerebral ischaemia.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. T. et al. Advances in intranasal application of stem cells in the treatment of central nervous system diseases. Stem Cell Res. Ther. 12, 210 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Mahmood, A., Lu, D. & Chopp, M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma 21, 33–39 (2004).

Article  PubMed  Google Scholar 

Mahmood, A., Lu, D. & Chopp, M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55, 1185–1193 (2004).

Article  PubMed  Google Scholar 

Mahmood, A., Lu, D., Lu, M. & Chopp, M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53, 697–702 (2003). discussion 702-693.

Article  PubMed  Google Scholar 

Lv, F. J., Tuan, R. S., Cheung, K. M. & Leung, V. Y. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cell 32, 1408–1419 (2014).

Article  CAS  Google Scholar 

Wang, Y. et al. The plasticity of mesenchymal stem cells in regulating surface HLA-I. iScience 15, 66–78 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Machado Cde, V., Telles, P. D. & Nascimento, I. L. Immunological characteristics of mesenchymal stem cells. Rev. Bras. Hematol. Hemoter. 35, 62–67 (2013).

Article  PubMed  Google Scholar 

Oh, J. Y. et al. MHC class I enables MSCs to evade NK-cell-mediated cytotoxicity and exert immunosuppressive activity. Stem Cell 40, 870–882 (2022).

Article  Google Scholar 

Bloom, D. D. et al. A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression. Cytotherapy 17, 140–151 (2015).

Article  CAS  PubMed  Google Scholar 

Fischer, U. M. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cell Dev. 18, 683–692 (2009). A comprehensive set of studies demonstrating that intravenously administered cell therapies are entrapped in the lung and only small percentages can traverse to the arterial circulation.

Article  CAS  Google Scholar 

Barker, R. A. & Widner, H. Immune problems in central nervous system cell therapy. NeuroRx 1, 472–481 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Hickey, W. F. Basic principles of immunological surveillance of the normal central nervous system. Glia 36, 118–124 (2001).

Article  CAS  PubMed  Google Scholar 

Widner, H. & Brundin, P. Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res. 472, 287–324 (1988).

Article  CAS  PubMed  Google Scholar 

Coyne, T. M., Marcus, A. J., Woodbury, D. & Black, I. B. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cell 24, 2483–2492 (2006).

Article  Google Scholar 

Coyne, T. M., Marcus, A. J., Reynolds, K., Black, I. B. & Woodbury, D. Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation 84, 1507–1516 (2007).

Article  PubMed  Google Scholar 

Hwang, J. W. et al. A comparison of immune responses exerted following syngeneic, allogeneic, and xenogeneic transplantation of mesenchymal stem cells into the mouse brain. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093052 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

Article  CAS  PubMed  Google Scholar 

Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

Article  CAS  PubMed  Google Scholar 

Woodbury, D., Schwarz, E. J., Prockop, D. J. & Black, I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370 (2000).

Article  CAS  PubMed  Google Scholar 

Sanchez-Ramos, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256 (2000).

Article  CAS  PubMed  Google Scholar 

Harting, M. T. et al. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg. 110, 1189–1197 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinden, J. D., Hicks, C., Stroemer, P., Vishnubhatla, I. & Corteling, R. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients. Stem Cell Dev. 26, 933–947 (2017).

Article  Google Scholar 

Selden, N. R. et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J. Neurosurg. Pediatr. 11, 643–652 (2013).

Article  PubMed  Google Scholar 

Andres, R. H. et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134, 1777–1789 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Teng, Y. D. et al. Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci. Transl. Med. 4, 165ra164 (2012).

Article  PubMed  Google Scholar 

Redmond, D. E. Jr et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl Acad. Sci. USA 104, 12175–12180 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tadesse, T. et al. Analysis of graft survival in a trial of stem cell transplant in ALS. Ann. Clin. Transl. Neurol. 1, 900–908 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, P. et al.

留言 (0)

沒有登入
gif