Maximizing treatment efficacy through patient stratification in neuropathic pain trials

Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

Article  PubMed  Google Scholar 

Alsaloum, M., Higerd, G. P., Effraim, P. R. & Waxman, S. G. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat. Rev. Neurol. 16, 689–705 (2020).

Article  CAS  PubMed  Google Scholar 

Finnerup, N. B. et al. Neuropathic pain clinical trials: factors associated with decreases in estimated drug efficacy. Pain 159, 2339–2346 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mbowe, O. B., Gewandter, J. S., Turk, D. C., Dworkin, R. H. & McDermott, M. P. Are there really only 2 kinds of people in the world? Evaluating the distribution of change from baseline in pain clinical trials. Pain 161, 195–201 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Attal, N., Bouhassira, D. & Baron, R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 17, 456–466 (2018).

Article  PubMed  Google Scholar 

Pascal, M. M. V. et al. DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain. Wellcome Open Res. 3, 63 (2018).

Article  PubMed  Google Scholar 

Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019).

Article  CAS  PubMed  Google Scholar 

Daou, I. et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soliman, N., Rice, A. S. C. & Vollert, J. A practical guide to preclinical systematic review and meta-analysis. Pain 161, 1949–1954 (2020).

Article  PubMed  Google Scholar 

Rice, A. S. C. et al. Transparency in the reporting of in vivo pre-clinical pain research: the relevance and implications of the ARRIVE (animal research: reporting in vivo experiments) guidelines. Scand. J. Pain 4, 58–62 (2013).

Article  PubMed  Google Scholar 

Knopp, K. L. et al. Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: consensus of the IMI-Europain consortium. Scand. J. Pain 7, 58–70 (2015).

Article  CAS  PubMed  Google Scholar 

Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

Article  PubMed  Google Scholar 

Dickenson, A. H. & Patel, R. Translational issues in precision medicine in neuropathic pain. Can. J. Pain 4, 30–38 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Field, M. J. et al. Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc. Natl Acad. Sci. USA 103, 17537–17542 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, R. & Dickenson, A. H. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J. Neurophysiol. 116, 159–170 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demant, D. T. et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155, 2263–2273 (2014).

Article  CAS  PubMed  Google Scholar 

Patel, R., Kucharczyk, M., Montagut-Bordas, C., Lockwood, S. & Dickenson, A. H. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: a back-translational study of oxcarbazepine. Eur. J. Pain 23, 183–197 (2019).

Article  CAS  PubMed  Google Scholar 

McDonnell, A. et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 159, 1465–1476 (2018).

Article  CAS  PubMed  Google Scholar 

Cao, L. et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci. Transl. Med. 8, 335ra56 (2016).

Article  PubMed  Google Scholar 

Goodwin, G., McMurray, S., Stevens, E. B., Denk, F. & McMahon, S. B. Examination of the contribution of Nav1.7 to axonal propagation in nociceptors. Pain 163, e869–e881 (2022).

Article  CAS  PubMed  Google Scholar 

Kraus, R. L. et al. Nav1.7 target modulation and efficacy can be measured in nonhuman primate assays. Sci. Transl. Med. 13, eaay1050 (2021).

Article  CAS  PubMed  Google Scholar 

Gewandter, J. S. et al. Predicting treatment response with sensory phenotyping in post-traumatic neuropathic pain. Pain. Med. 23, 1726–1732 (2022).

Article  PubMed  Google Scholar 

Fisher, A. S., Lanigan, M. T., Upton, N. & Lione, L. A. Preclinical neuropathic pain assessment; the importance of translatability and bidirectional research. Front. Pharmacol. 11, 614990 (2020).

Article  CAS  PubMed  Google Scholar 

Hunt, J., Knazovicky, D., Lascelles, B. D. X. & Murrell, J. Quantitative sensory testing in dogs with painful disease: a window to pain mechanisms? Vet. J. 243, 33–41 (2019).

Article  PubMed  Google Scholar 

Edvinsson, L. CGRP and migraine: from bench to bedside. Rev. Neurol. 177, 785–790 (2021).

Article  CAS  PubMed  Google Scholar 

Wise, B. L., Seidel, M. F. & Lane, N. E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 17, 34–46 (2021).

Article  PubMed  Google Scholar 

Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvo, M. et al. The genetics of neuropathic pain from model organisms to clinical application. Neuron 104, 637–653 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zorina-Lichtenwalter, K., Parisien, M. & Diatchenko, L. Genetic studies of human neuropathic pain conditions: a review. Pain 159, 583–594 (2018).

Article  CAS  PubMed  Google Scholar 

Sun, B. B. et al. Genetic associations of protein-coding variants in human disease. Nature 603, 95–102 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burand, A. J. & Stucky, C. L. Fabry disease pain: patient and preclinical parallels. Pain 162, 1305–1321 (2021).

Article  CAS  PubMed  Google Scholar 

Asiri, M. M. H., Engelsman, S., Eijkelkamp, N. & Höppener, J. W. M. Amyloid proteins and peripheral neuropathy. Cells 9, E1553 (2020).

Article  PubMed  Google Scholar 

Adams, D., Koike, H., Slama, M. & Coelho, T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat. Rev. Neurol. 15, 387–404 (2019).

Article  CAS  PubMed  Google Scholar 

Houlden, H. et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006).

Article  PubMed  Google Scholar 

Kok, K. et al. Fabry disease: molecular basis, pathophysiology, diagnostics and potential therapeutic directions. Biomolecules 11, 271 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sachau, J., Kersebaum, D., Baron, R. & Dickenson, A. H. Unusual pain disorders–what can be learned from them? J. Pain Res. 13, 3539–3554 (2020).

Article  PubMed  Google Scholar 

Fridman, V. et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, e359–e370 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif