Predictive, preventive, and personalized management of retinal fluid via computer-aided detection app for optical coherence tomography scans

Mitchell P, et al. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.

Article  PubMed  Google Scholar 

Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.

Article  PubMed  Google Scholar 

Daruich A, et al. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118.

Article  PubMed  Google Scholar 

Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: Natural history of visual outcome. JAMA Ophthalmol. 2014;132(1):13–22.

Article  PubMed  Google Scholar 

Pichi, F. and P. Neri, Complications in uveitis. p. X, 288 p. 89 illus., 73 illus. in color. online resource.

Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt-Erfurth U, et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res. 2022;86:100972.

Article  PubMed  Google Scholar 

Virgili, G., et al., Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev, 2015. 1: p. CD008081.

Schmidt-Erfurth U, et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014;98(9):1144–67.

Article  PubMed  Google Scholar 

Group CR, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.

Article  Google Scholar 

Silva R, et al. Treat-and-extend versus monthly regimen in neovascular age-related macular degeneration: Results with ranibizumab from the TREND study. Ophthalmology. 2018;125(1):57–65.

Article  PubMed  Google Scholar 

Flaxel CJ, et al. Age-related macular degeneration preferred practice pattern(R). Ophthalmology. 2020;127(1):P1–65.

Article  PubMed  Google Scholar 

Keenan TDL, et al. Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: Age-related eye disease study 2: 10-Year follow-on study. Ophthalmology. 2021;128(1):100–9.

Article  PubMed  Google Scholar 

Sarhan MH, et al. Machine learning techniques for ophthalmic data processing: A review. IEEE J Biomed Health Inform. 2020;24(12):3338–50.

Article  PubMed  Google Scholar 

Bogunovic H, et al. RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging. 2019;38(8):1858–74.

Article  PubMed  Google Scholar 

De Fauw J, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50.

Article  PubMed  Google Scholar 

Lin, M., et al., Recent advanced deep learning architectures for retinal fluid segmentation on optical coherence tomography images. Sensors (Basel), 2022. 22(8).

Rim TH, et al. Computer-aided detection and abnormality score for the outer retinal layer in optical coherence tomography. Br J Ophthalmol. 2022;106(9):1301–7.

Article  PubMed  Google Scholar 

Rim TH, et al. Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: Trained deep learning algorithm. Br J Ophthalmol. 2021;105(8):1133–9.

Article  PubMed  Google Scholar 

Golubnitschaja O, et al. Medicine in the early twenty-first century: Paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23.

Article  PubMed  PubMed Central  Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

Article  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

Article  PubMed  Google Scholar 

Vaswani, A., et al., Attention is all you need, in Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, Curran Associates Inc.: Long Beach, California, USA. p. 6000–6010.

Dosovitskiy, A., et al., An image is worth 16x16 words: Transformers for image recognition at scale. 2021.

Han, K., et al., A survey on visual transformer. ArXiv, 2020. abs/2012.12556.

Raghu, M., et al. Do vision transformers see like convolutional neural networks? 2021. arXiv:2108.08810.

Karimi, D., S. Vasylechko, and A. Gholipour Convolution-free medical image segmentation using transformers. 2021. arXiv:2102.13645.

Chen, J., et al. TransUNet: Transformers make strong encoders for medical image segmentation. 2021. arXiv:2102.04306.

Luo, X., et al. Semi-supervised medical image segmentation via cross teaching between CNN and transformer. 2021. arXiv:2112.04894.

Kermany DS, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122-1131 e9.

Article  PubMed  Google Scholar 

Fuchs P, et al. Artificial intelligence in the management of anti-VEGF treatment: The Vienna fluid monitor in clinical practice. Ophthalmologe. 2022;119(5):520–4.

Article  PubMed  PubMed Central  Google Scholar 

Yu HJ, et al. Home monitoring of age-related macular degeneration: Utility of the ForeseeHome device for detection of neovascularization. Ophthalmol Retina. 2021;5(4):348–56.

Article  PubMed  Google Scholar 

Liu Y, Holekamp NM, Heier JS. Prospective, longitudinal study: Daily self-imaging with home OCT for neovascular age-related macular degeneration. Ophthalmol Retina. 2022;6(7):575–85.

Article  PubMed  Google Scholar 

Skelly, A., et al., Treat and extend treatment interval patterns with anti-VEGF therapy in nAMD patients. Vision (Basel), 2019. 3(3).

Hasler PW, Flammer J. Predictive, preventive and personalised medicine for age-related macular degeneration. EPMA J. 2010;1(2):245–51.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O. Time for new guidelines in advanced diabetes care: Paradigm change from delayed interventional approach to predictive, preventive & personalized medicine. EPMA J. 2010;1(1):3–12.

Article  PubMed  PubMed Central  Google Scholar 

Majithia S, et al. Cohort profile: The Singapore epidemiology of eye diseases study (SEED). Int J Epidemiol. 2021;50(1):41–52.

Article  PubMed  Google Scholar 

Hassan B, et al. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy. Comput Biol Med. 2021;136:104727.

Article  PubMed  Google Scholar 

Mantel I, et al. Automated quantification of pathological fluids in neovascular age-related macular degeneration, and its repeatability using deep learning. Translational Vision Science & Technology. 2021;10(4):17–17.

Article  Google Scholar 

Wilson M, et al. Validation and clinical applicability of whole-volume automated segmentation of optical coherence tomography in retinal disease using deep learning. JAMA Ophthalmol. 2021;139(9):964–73.

Article  PubMed  PubMed Central  Google Scholar 

Ranftl, R., A. Bochkovskiy, and V. Koltun Vision transformers for dense prediction. 2021. arXiv:2103.13413.

Hu, J., L. Shen, and G. Sun. Squeeze-and-excitation networks. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018.

Lee, Y. and J. Park CenterMask : Real-time anchor-free instance segmentation. 2019. arXiv:1911.06667.

Wang, S., et al., U-Net using stacked dilated convolutions for medical image segmentation. ArXiv, 2020. abs/2004.03466.

Oktay, O., et al. Attention U-net: Learning where to look for the pancreas. 2018. arXiv:1804.03999.

Chakravarthy U, et al. Automated identification of lesion activity in neovascular age-related macular degeneration. Ophthalmology. 2016;123(8):1731–6.

Article  PubMed  Google Scholar 

Kwon JM, et al. Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS ONE. 2018;13(10):e0205836.

Article  PubMed  PubMed Central  Google Scholar 

Alryalat, S.A., et al., Deep learning prediction of response to anti-VEGF among diabetic macular edema patients: Treatment response analyzer system (TRAS). Diagnostics (Basel), 2022. 12(2).

Lanzetta P, Loewenstein A, Vision Academy Steering. Fundamental principles of an anti-VEGF treatment regimen: Optimal application of intravitreal anti-vascular endothelial growth factor therapy of macular diseases. Graefes Arch Clin Exp Ophthalmol. 2017;255(7):1259–73.

Article  PubMed  PubMed Central  Google Scholar 

Granstam E, et al. Switching anti-VEGF agent for wet AMD: evaluation of impact on visual acuity, treatment frequency and retinal morphology in a real-world clinical setting. Graefes Arch Clin Exp Ophthalmol. 2021;259(8):2085–93.

Article  PubMed  PubMed Central  Google Scholar 

Ran AR, et al. Three-dimensional multi-task deep learning model to detect glaucomatous optic neuropathy and myopic features from optical coherence tomography scans: A retrospective multi-centre study. Front Med (Lausanne). 2022;9:860574.

Article  Google Scholar 

留言 (0)

沒有登入
gif