Leflunomide abrogates neuroinflammatory changes in a rat model of Alzheimer’s disease: the role of TNF-α/NF-κB/IL-1β axis inhibition

Abdel-Aal RA, Assi AA, Kostandy BB (2011) Rivastigmine reverses aluminum-induced behavioral changes in rats. Eur J Pharmacol 659(2–3):169–176. https://doi.org/10.1016/j.ejphar.2011.03.011

Article  CAS  PubMed  Google Scholar 

Abdel-Aal R, Hussein O, Elsaady R, Abdelzaher L (2021) Celecoxib effect on rivastigmine anti-Alzheimer activity against aluminum chloride-induced neurobehavioral deficits as a rat model of Alzheimer’s disease; novel perspectives for an old drug. J Med Life Sci 0(0):44–82. https://doi.org/10.21608/jmals.2021.210630

Article  Google Scholar 

Ahmad Rather M, Justin Thenmozhi A, Manivasagam T, Dhivya Bharathi M, Essa MM, Guillemin GJ (2018) Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer’s disease. Front Biosci (schol Ed) 10(2):262–275. https://doi.org/10.2741/s514

Article  Google Scholar 

Akhtar A, Bishnoi M, Sah SP (2020) Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer’s disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 164:83–97. https://doi.org/10.1016/j.brainresbull.2020.08.001

Article  CAS  PubMed  Google Scholar 

Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000) Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 14(Suppl 1):S47-53. https://doi.org/10.1097/00002093-200000001-00008

Article  CAS  PubMed  Google Scholar 

Ali AA, Ahmed HI, Abu-Elfotuh K (2016) Modeling stages mimic Alzheimer’s disease induced by different doses of aluminum in rats: focus on progression of the disease in response to time. of, 11, 2

Ali AA, Khalil MG, Abd El-Latif DM, Okda T, Abdelaziz AI, Abu-Elfotuh K, Wahid A (2022) The influence of vinpocetine alone or in combination with Epigallocatechin-3-gallate, Coenzyme COQ10, Vitamin E and Selenium as a potential neuroprotective combination against aluminium-induced Alzheimer’s disease in Wistar Albino Rats. Arch Gerontol Geriatr 98:104557. https://doi.org/10.1016/j.archger.2021.104557

Alldred A, Emery P (2001) Leflunomide: a novel DMARD for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 2(1):125–137. https://doi.org/10.1517/14656566.2.1.125

Article  CAS  PubMed  Google Scholar 

Anuradha U, Kumar A, Singh RK (2022) The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci 43(1):285–298. https://doi.org/10.1007/s10072-021-05343-7

Article  PubMed  Google Scholar 

Anwar HM, Georgy GS, Hamad SR, Badr WK, El Raey MA, Abdelfattah MAO, Sobeh M (2021) A Leaf Extract of Antioxidants (Basel). 10(6). https://doi.org/10.3390/antiox10060947

Arendt T, Bigl V, Tennstedt A, Arendt A (1984) Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci Lett 48(1):81–85. https://doi.org/10.1016/0304-3940(84)90292-1

Article  CAS  PubMed  Google Scholar 

Aupperle KR, Bennett BL, Boyle DL, Tak P-P, Manning AM, Firestein GS (1999) NF-κB regulation by IκB kinase in primary fibroblast-like synoviocytes. J Immunol 163(1):427–433

CAS  PubMed  Google Scholar 

Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon M-C (2017) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazzari FH, Abdallah DM, El-Abhar HS (2019) Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer’s disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats. Molecules 24(10):1992

Article  CAS  PubMed Central  Google Scholar 

Campbell A, Yang EY, Tsai-Turton M, Bondy SC (2002) Pro-inflammatory effects of aluminum in human glioblastoma cells. Brain Res 933(1):60–65. https://doi.org/10.1016/s0006-8993(02)02305-3

Article  CAS  PubMed  Google Scholar 

Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, Li Y (2016) Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere 151:289-295. https://doi.org/10.1016/j.chemosphere.2016.02.092

Carleton HM, Drury RAB, Wallington EA (1980) Carleton’s histological technique. Oxford University Press, USA

Google Scholar 

Chavali VD, Agarwal M, Vyas VK, Saxena B (2020) Neuroprotective effects of ethyl pyruvate against aluminum chloride-induced Alzheimer’s disease in rats via inhibiting toll-like receptor 4. J Mol Neurosci 70(6):836–850. https://doi.org/10.1007/s12031-020-01489-9

Article  CAS  PubMed  Google Scholar 

Cummings J, Lee G, Nahed P, Kambar MEZN, Zhong K, Fonseca J, Taghva K (2022) Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement (n y) 8(1):e12295. https://doi.org/10.1002/trc2.12295

Article  Google Scholar 

Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. The Lancet 308(8000):1403

Article  Google Scholar 

de Wilde MC, Penke B, van der Beek EM, Kuipers AAM, Kamphuis PJ, Broersen LM (2011) Neuroprotective effects of a specific multi-nutrient intervention against Aβ 42-induced toxicity in rats. J Alzheimers Dis 27(2):327–339

Article  PubMed  Google Scholar 

Dhar A, Kaundal RK, Sharma SS (2006) Neuroprotective effects of FeTMPyP: a peroxynitrite decomposition catalyst in global cerebral ischemia model in gerbils. Pharmacol Res 54(4):311–316. https://doi.org/10.1016/j.phrs.2006.06.009

Article  CAS  PubMed  Google Scholar 

Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 7:2. https://doi.org/10.1186/s40035-018-0107-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eldufani J, Blaise G (2019) The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: a review of recent clinical applications. Alzheimers Dement (n y) 5:175–183. https://doi.org/10.1016/j.trci.2019.03.004

Article  Google Scholar 

Feng Y, Li X, Zhou W, Lou D, Huang D, Li Y, Zhou W (2017) Regulation of SET gene expression by NFkB. Mol Neurobiol 54(6):4477-4485

Fodero LR, Mok SS, Losic D, Martin LL, Aguilar MI, Barrow CJ, Small DH (2004) α7‐Nicotinic acetylcholine receptors mediate an Aβ1− 42‐induced increase in the level of acetylcholinesterase in primary cortical neurones. J Neurochem 88(5):1186-1193

Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm (vienna) 109(7–8):1053–1065. https://doi.org/10.1007/s007020200089

Article  CAS  Google Scholar 

Hawley WR, Witty CF, Daniel JM, Dohanich GP (2015) Choline acetyltransferase in the hippocampus is associated with learning strategy preference in adult male rats. Behav Brain Res 289:118–124

Article  CAS  PubMed  Google Scholar 

Helmy MM, Helmy MW, Abd Allah DM, Zaid AMA, El-Din MMM (2014) Selective ETA receptor blockade protects against cisplatin-induced acute renal failure in male rats. Eur J Pharmacol 730:133–139

Article  CAS  PubMed  Google Scholar 

Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477. https://doi.org/10.1038/nri3705

Article  CAS  PubMed  Google Scholar 

Herrmann ML, Schleyerbach R, Kirschbaum BJ (2000) Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47(2–3):273–289. https://doi.org/10.1016/s0162-3109(00)00191-0

Article  CAS  PubMed  Google Scholar 

Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768-774. https://doi.org/10.1212/WNL.0b013e3181b6bb95

Ibrahim AN, Attallah MI, Elnaggar RA (2018) “Combination of cholecalciferol and rivastigmine improves cognitive dysfunction and reduces inflammation in STZ induced Alzheimer’s model experimentally in rats.” Egypt J Basic Clin Pharm 8. https://doi.org/10.11131/2018/101369

Jangra A, Kasbe P, Pandey SN, Dwivedi S, Gurjar SS, Kwatra M, Lahkar M (2015) Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 168(2):462-471. https://doi.org/10.1007/s12011-015-0375-7

Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, Bowers WJ (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Clin Pathol 173(6):1768-1782

Jin H, Piao SG, Jin JZ, Jin YS, Cui ZH, Jin HF, Li C (2014) Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy. Nephron Exp Nephrol 126(3):148-156. https://doi.org/10.1159/000362556

Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T (2015) Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res 40(4):767–776. https://doi.org/10.1007/s11064-015-1525-1

Article  CAS  PubMed  Google Scholar 

Justin-Thenmozhi A, Dhivya Bharathi M, Kiruthika R, Manivasagam T, Borah A, Essa MM (2018) Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in wistar rats. Neurotox Res 34(3):463–476

Article  CAS  PubMed  Google Scholar 

Kamal MA, Greig NH, Reale M (2009) Anti-inflammatory properties of acetylcholinesterase inhibitors administered in Alzheimer’s disease. Anti-Inflamm Anti-Allergy Agents Med Chem (Formerly Curr Med Chem-Anti-Inflamm Anti-Allergy Agents) 8(1):85–100

Article  CAS  Google Scholar 

Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Dis. https://doi.org/10.4061/2011/276393

Article  Google Scholar 

Kayhan S, Guzel A, Duran L, Tutuncu S, Gunaydın M, Salis O, Selcuk MY (2013) Effects of leflunomide on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats. J Thorac Dis 5(5):641-649. https://doi.org/10.3978/j.issn.2072-1439.2013.09.20

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Transl Res Clin Interventions 4:575–590

Article  Google Scholar 

Kirsch BM, Zeyda M, Stuhlmeier K, Grisar J, Smolen JS, Watschinger B, Säemann MD (2005) The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function. Arthritis Res Ther 7(3):R694-703. https://doi.org/10.1186/ar1727

Lanctôt KL, Herrmann N, Yau KK, Khan LR, Liu BA, LouLou MM, Einarson TR (2003) Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ 169(6):557–564

PubMed  PubMed Central  Google Scholar 

Li W-D, Ran G-X, Teng H-L, Lin Z-B (2002) Dynamic effects of leflunomide on IL-1, IL-6, and TNF-alpha activity produced from peritoneal macrophages in adjuvant arthritis rats. Acta Pharmacol Sin 23(8):752–756

CAS  PubMed  Google Scholar 

Lin WT, Chen RC, Lu WW, Liu SH, Yang FY (2015) Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci Rep 5:9671. https://doi.org/10.1038/srep09671

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukiw WJ, Percy ME, Kruck TP (2005) Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 99(9):1895–1898. https://doi.org/10.1016/j.jinorgbio.2005.04.021

Article  CAS  PubMed  Google Scholar 

Manna SK, Aggarwal BB (1999) Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-κB activation and gene expression. J Immunol 162(4):2095–2102

CAS 

留言 (0)

沒有登入
gif