Osteoregenerative efficacy of a novel synthetic, resorbable Ca/P/S-based bone graft substitute in intra- and peri-articular fractures: a brief medical image-based report

Mauffrey C, Seligson D, Lichte P, Pape HC, Al-Rayyan M. Bone graft substitutes for articular support and metaphyseal comminution: what are the options? Injury. 2011;42(Suppl 2):S35–9.

PubMed  Google Scholar 

Mallina R, Kanakaris NK, Giannoudis PV. Peri-articular fractures of the knee: an update on current issues. Knee. 2010;17:181–6.

PubMed  Google Scholar 

Lowery K, Chatuverdi A, Blomfield M, Sharma H. Effectiveness of the management of bony articular collapse with bony defects in tibial plateau fractures with the use of genex: an absorbable calcium composite synthetic bone graft. Strateg Trauma Limb Reconstr. 2018;4:20–5.

Google Scholar 

Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury. 2013;44:S86–94.

PubMed  Google Scholar 

Lewandrowski KU, Gresser JD, Wise DL, Trantolo DJ. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials. 2000;21:757–64.

CAS  PubMed  Google Scholar 

Cheng I, Oshtory R, Wildstein MS. The role of osteobiologics in spinal deformity. Neurosurg Clin N Am. 2007;18:393–401.

PubMed  Google Scholar 

Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83:98–103.

PubMed  Google Scholar 

Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9.

PubMed  PubMed Central  Google Scholar 

Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.

PubMed  Google Scholar 

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

PubMed  PubMed Central  Google Scholar 

Dahiya UR, Mishra S, Bano S. Application of bone substitutes and its future prospective in regenerative medicine. In: Barbeck M, Jung O, Smeets R, Koržinskas T, editors. Biomaterial-supported tissue reconstruction or regeneration. London: IntechOpen; 2019.

Google Scholar 

Donati D, Zolezzi C, Tomba P, Viganò A. Bone grafting: historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop. 2007;78:19–25.

PubMed  Google Scholar 

Migliorini F, La Padula G, Torsiello E, Spiezia F, Oliva F, Maffulli N. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):1–10.

Google Scholar 

Pellegrini GG, Mattiuzzi AS, Pellegrini MA, Corso LA, Morales CPC, Osinaga EA, et al. Update on bone grafting materials used in dentistry in the bone healing process: our experience from translational studies to their clinical use. In: Kummoona R, editor., et al., Bone grafting-recent advances with special references to Cranio-Maxillofacial surgery. London: IntechOpen; 2018.

Google Scholar 

Kwong FN, Harris MB. Recent developments in the biology of fracture repair. J Am Acad Orthop Surg. 2008;16:619–25.

PubMed  Google Scholar 

Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354–61.

CAS  PubMed  Google Scholar 

Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.

Google Scholar 

Kesireddy V, Kasper FK. Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering. J Mater Chem B. 2016;4:6773–86.

CAS  PubMed  PubMed Central  Google Scholar 

Tumedei M, Savadori P, Del Fabbro M. Synthetic blocks for bone regeneration: a systematic review and meta-analysis. Int J Mol Sci. 2019;20:4221.

PubMed Central  Google Scholar 

Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol. 2000;2015(68):182–216.

Google Scholar 

Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2014;7(Suppl 2):S203–17.

PubMed  Google Scholar 

Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone - a systematic review and meta-analysis. Eur J Oral Implantol. 2014;7:S219–34.

PubMed  Google Scholar 

Scarano A, Carinci F, Assenza B, Piattelli M, Murmura G, Piattelli A. Vertical ridge augmentation of atrophic posterior mandible using an inlay technique with a xenograft without miniscrews and miniplates: case series. Clin Oral Implan Res. 2011;22:1125–30.

Google Scholar 

Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56.

CAS  PubMed  PubMed Central  Google Scholar 

Horowitz RA, Leventis MD, Rohrer MD, Prasad HS. Bone grafting: history, rationale, and selection of materials and techniques. Compend Contin Educ Dent. 2014;35:1–6.

PubMed  Google Scholar 

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):1–27.

Google Scholar 

Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value. J Tissue Eng Regen Med. 2018;12(4):936–60.

CAS  PubMed  Google Scholar 

Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 2015;31:317–38.

CAS  PubMed  PubMed Central  Google Scholar 

Yang BC, Lee JW, Ju CP, Chern Lin JH. Physical/chemical properties and resorption behavior of a newly developed Ca/P/S-based bone substitute material. Materials (Basel). 2020;13:3458.

CAS  Google Scholar 

Blokhuis TJ. Bioresorbable bone graft substitutes. In: Mallick K, editor. Bone substitute biomaterials. Cambridge: Woodhead Publishing; 2014. p. 80–92.

Google Scholar 

Heinemann F, Mundt T, Biar R, Gedrange T, Goetz W. A 3-year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentations using a new nanocrystalline hydroxyapatite. J Physiol Pharmacol. 2009;60:91–7.

PubMed  Google Scholar 

Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK. Imaging characteristics of bone graft materials. Radiographics. 2006;26:373–88.

PubMed  Google Scholar 

Yang BC, Lan SM, Ju CP, Chern Lin JH. Osteoporotic goat spine implantation study using a synthetic, resorbable Ca/P/S-based bone substitute. Front Bioeng Biotechnol. 2020;8:876.

PubMed  PubMed Central  Google Scholar 

LaStayo PC, Winters KM, Hardy M. Fracture healing: bone healing, fracture management, and current concepts related to the hand. J Hand Ther. 2003;16:81–93.

PubMed  Google Scholar 

McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60:150–62.

PubMed  Google Scholar 

Grundnes O, Reikerås O. The importance of the hematoma for fracture healing in rats. Acta Orthop Scand. 1993;64:340–2.

CAS  PubMed  Google Scholar 

DiPietro LA. Wound healing: the role of the macrophage and other immune cells. Shock (Augusta, Ga). 1995;4:233–40.

CAS  Google Scholar 

Nemeth GG, Bolander ME, Martin GR. Growth factors and their role in wound and fracture healing. In: Barbul A, editor. Growth factors and other aspects of wound healing, biological and clinical implications. New York: A.R. Liss; 1988. p. 1–17.

Google Scholar 

Brader S, Fink D, Caplan A. Mesenchymal stem cells in bone development: bone repair and skeletal regeneration. J Cell Biochem. 1994;56:283–94.

Google Scholar 

Bolander ME. Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med. 1992;200:165–70.

CAS  PubMed  Google Scholar 

Aro H, Wippermann B, Hodgson S, Wahner H, Lewallen D, Chao E. Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry. J Bone Joint Surg Am. 1989;71:1020–30.

CAS  PubMed  Google Scholar 

Blenman PR, Carter DR, Beaupre GS. Role of mechanical loading in the progressive ossification of a fracture callus. J Orthop Res. 1989;7:398–407.

CAS  PubMed  Google Scholar 

Wolff J. Das gesetz der transformation. Transformation der knochen. 1892.

Buckwalter JA, Einhorn TA, Marsh J, Gulotta L, Ranawat A, Lane J. Bone and joint healing. In: Rockwood CA, Green DP, Bucholz RW, Heckman JD, editors. Rockwood and Green’s Fractures in Adults. Philadelphia: Lippincott, Williams, and Wilkins; 2001. p. 245–71.

Google Scholar 

Einhorn TA. The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. San Diego: Academic Press; 1996. p. 3–22.

Google Scholar 

Hirota S, Takaoka K, Hashimoto J, Nakase T, Takemura T, Morii E, et al. Expression of mRNA of murine bone-related proteins in ectopic bone induced by murine bone morphogenetic protein-4. Cell Tissue Res. 1994;277:27–32.

CAS  PubMed  Google Scholar 

Kim CS, Kim JI, Kim J, Choi SH, Chai JK, Kim CK, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials. 2005;26:2501–7.

CAS  PubMed  Google Scholar 

Habibovic P, de Groot K. Osteoinductive biomaterials–properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32.

CAS  PubMed  Google Scholar 

Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res. 2008;26:1363–70.

CAS  PubMed  Google Scholar 

Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013;34:2167–76.

CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Zhang B, Bao C, Habibovic P, Hu J, Zhang X. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs. PLoS ONE. 2014;9:e107044.

PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif